-
1
-
-
0034745001
-
Segmentation of brain mr images through a hidden Markov random field model and the expectation-maximization algorithm
-
Yongyue Zhang, Michael Brady, and Stephen Smith. Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. IEEE transactions on medical imaging, 20(1): 45-57, 2001.
-
(2001)
IEEE Transactions on Medical Imaging
, vol.20
, Issue.1
, pp. 45-57
-
-
Zhang, Y.1
Brady, M.2
Smith, S.3
-
5
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and variational inference. Foundations and Trends® in Machine Learning, 1(1-2): 1-305, 2008.
-
(2008)
Foundations and Trends® in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
10
-
-
84997848955
-
-
Dustin Tran, Alp Kucukelbir, Adji B Dieng, Maja Rudolph, Dawen Liang, and David M Blei. Edward: A library for probabilistic modeling, inference, and criticism. arXiv preprint arXiv: 1610.09787, 2016.
-
(2016)
Edward: A Library for Probabilistic Modeling, Inference, and Criticism
-
-
Tran, D.1
Kucukelbir, A.2
Dieng, A.B.3
Rudolph, M.4
Liang, D.5
Blei, D.M.6
-
11
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18: 1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
12
-
-
0029652445
-
The "wake-sleep" algorithm for unsupervised neural networks
-
Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The "wake-sleep" algorithm for unsupervised neural networks. Science, 268(5214): 1158, 1995.
-
(1995)
Science
, vol.268
, Issue.5214
, pp. 1158
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
15
-
-
84959248509
-
Auto-encoding variational bayes
-
Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013. URL http://arxiv.org/abs/1312.6114.
-
(2013)
CoRR
-
-
Kingma, D.P.1
Welling, M.2
-
16
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Beijing, China, 21-26 June 2014
-
Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pages 1278-1286, 2014. URL http://jmlr.org/proceedings/papers/v32/rezende14.html.
-
(2014)
Proceedings of the 31th International Conference on Machine Learning, ICML 2014
, pp. 1278-1286
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
17
-
-
84965108717
-
Importance weighted autoencoders
-
Yuri Burda, Roger B. Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. CoRR, abs/1509.00519, 2015. URL http://arxiv.org/abs/1509.00519.
-
(2015)
CoRR
-
-
Burda, Y.1
Grosse, R.B.2
Salakhutdinov, R.3
-
22
-
-
85047018952
-
Variational inference via chi-upper bound minimization
-
Adji B Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, and David M Blei. Variational inference via chi-upper bound minimization. Advances in Neural Information Processing Systems, 2017.
-
(2017)
Advances in Neural Information Processing Systems
-
-
Dieng, A.B.1
Tran, D.2
Ranganath, R.3
Paisley, J.4
Blei, D.M.5
-
23
-
-
84867112898
-
Nonparametric variational inference
-
Edinburgh, Scotland, UK
-
Samuel Gershman, Matthew D. Hoffman, and David M. Blei. Nonparametric variational inference. In Proceedings of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, 2012.
-
(2012)
Proceedings of the 29th International Conference on Machine Learning, ICML 2012
-
-
Gershman, S.1
Hoffman, M.D.2
Blei, D.M.3
-
26
-
-
0000329993
-
Information processing in dynamical systems: Foundations of harmony theory
-
Paul Smolensky. Information processing in dynamical systems: Foundations of harmony theory. Technical report, DTIC Document, 1986.
-
(1986)
Technical Report, DTIC Document
-
-
Smolensky, P.1
-
28
-
-
84897475251
-
Distributed training of large-scale logistic models
-
Atlanta, GA, USA
-
Siddharth Gopal and Yiming Yang. Distributed training of large-scale logistic models. In Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, pages 289-297, 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning, ICML 2013
, pp. 289-297
-
-
Gopal, S.1
Yang, Y.2
-
32
-
-
84897544737
-
-
Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow, Arnaud Bergeron, Nicolas Bouchard, David Warde-Farley, and Yoshua Bengio. Theano: new features and speed improvements. arXiv preprint arXiv: 1211.5590, 2012.
-
(2012)
Theano: New Features and Speed Improvements
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.5
Bergeron, A.6
Bouchard, N.7
Warde-Farley, D.8
Bengio, Y.9
-
33
-
-
84862524901
-
The neural autoregressive distribution estimator
-
Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In AISTATS, Volume 1, page 2, 2011.
-
(2011)
AISTATS
, vol.1
, pp. 2
-
-
Larochelle, H.1
Murray, I.2
|