-
1
-
-
0001744523
-
Zero-variance principle for Monte Carlo algorithms
-
Assaraf, R. and Caffarel, M. (1999). Zero-variance principle for monte carlo algorithms. In Phys. Rev. Let.
-
(1999)
Phys. Rev. Let
-
-
Assaraf, R.1
Caffarel, M.2
-
3
-
-
85009908079
-
-
arXiv preprint arXiv:1509.07164
-
Carpenter, B., Hoffman, M. D., Brubaker, M., Lee, D., Li, P., and Betancourt, M. (2015). The Stan Math Library: Reverse-mode automatic differentiation in C++. arXiv preprint arXiv:1509.07164.
-
(2015)
The Stan Math Library: Reverse-mode Automatic Differentiation in C++
-
-
Carpenter, B.1
Hoffman, M.D.2
Brubaker, M.3
Lee, D.4
Li, P.5
Betancourt, M.6
-
4
-
-
84899003086
-
Propagation algorithms for variational Bayesian learning
-
Ghahramani, Z. and Beal, M. (2001). Propagation algorithms for variational Bayesian learning. In NIPS 13, pages 507-513.
-
(2001)
NIPS 13
, pp. 507-513
-
-
Ghahramani, Z.1
Beal, M.2
-
5
-
-
84937849144
-
Generative adversarial nets
-
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Neural Information Processing Systems.
-
(2014)
Neural Information Processing Systems
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
6
-
-
85044045551
-
-
arXiv.org
-
Hernández-Lobato, J. M., Li, Y., Rowland, M., Hernández-Lobato, D., Bui, T., and Turner, R. E. (2015). Black-box α-divergence Minimization. arXiv.org.
-
(2015)
Black-box α-divergence Minimization
-
-
Hernández-Lobato, J.M.1
Li, Y.2
Rowland, M.3
Hernández-Lobato, D.4
Bui, T.5
Turner, R.E.6
-
7
-
-
84878919168
-
Stochastic variational inference
-
Hoffman, M., Blei, D., Wang, C., and Paisley, J. (2013). Stochastic variational inference. Journal of Machine Learning Research, 14(1303-1347).
-
(2013)
Journal of Machine Learning Research
, vol.14
, Issue.1303-1347
-
-
Hoffman, M.1
Blei, D.2
Wang, C.3
Paisley, J.4
-
8
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5):359-366.
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
9
-
-
22044434800
-
Estimation of non-Normalized statistical models by score matching
-
(Apr)
-
Hyvärinen, A. (2005). Estimation of non-normalized statistical models by score matching. Journal of Machine Learning Research, 6 (Apr):695-709.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 695-709
-
-
Hyvärinen, A.1
-
10
-
-
0033225865
-
Introduction to variational methods for graphical models
-
Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. (1999). Introduction to variational methods for graphical models. Machine Learning, 37:183-233.
-
(1999)
Machine Learning
, vol.37
, pp. 183-233
-
-
Jordan, M.1
Ghahramani, Z.2
Jaakkola, T.3
Saul, L.4
-
11
-
-
85083952489
-
Auto-encoding variational bayes
-
Kingma, D. and Welling, M. (2014). Auto-encoding variational bayes. In (ICLR).
-
(2014)
ICLR
-
-
Kingma, D.1
Welling, M.2
-
12
-
-
85083951076
-
Adam: A method for stochastic optimization
-
Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR, abs/1412.6980.
-
(2014)
CoRR
-
-
Kingma, D.P.1
Ba, J.2
-
15
-
-
84997812859
-
-
arXiv preprint arXiv:1602.05473
-
Maaløe, L., Sønderby, C. K., Sønderby, S. K., and Winther, O. (2016). Auxiliary deep generative models. arXiv preprint arXiv:1602.05473.
-
(2016)
Auxiliary Deep Generative Models
-
-
Maaløe, L.1
Sønderby, C.K.2
Sønderby, S.K.3
Winther, O.4
-
16
-
-
0345978970
-
Expectation propagation for approximate Bayesian inference
-
Minka, T. P. (2001). Expectation propagation for approximate Bayesian inference. In UAI.
-
(2001)
UAI
-
-
Minka, T.P.1
|