메뉴 건너뛰기




Volumn 3, Issue , 2017, Pages 2379-2390

Learning deep latent Gaussian models with markov chain monte carlo

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CHAINS; CLUSTERING ALGORITHMS; GAUSSIAN DISTRIBUTION; LEARNING SYSTEMS; MAXIMUM LIKELIHOOD ESTIMATION; MAXIMUM PRINCIPLE; MONTE CARLO METHODS;

EID: 85046994540     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (34)

References (36)
  • 11
    • 85059435623 scopus 로고    scopus 로고
    • Inference from simulations and monitoring convergence
    • Chapman and Hall/CRC
    • Gelman, Andrew and Shirley, Kenneth. Inference from simulations and monitoring convergence. In Handbook of Markov chain Monte Carlo, pp. 163-174. Chapman and Hall/CRC, 2011
    • (2011) Handbook of Markov Chain Monte Carlo , pp. 163-174
    • Andrew, G.1    Kenneth, S.2
  • 14
    • 84901687683 scopus 로고    scopus 로고
    • The no-u-turn sampler: Adaptively setting path lengths in hamiltonian monte carlo
    • Hoffman, Matthew D. And Gelman, Andrew. The no-u-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1):1593-1623, 2014
    • (2014) Journal of Machine Learning Research , vol.15 , Issue.1 , pp. 1593-1623
    • Hoffman Matthew, D.1    Andrew, G.2
  • 15
    • 0033225865 scopus 로고    scopus 로고
    • Introduction to variational methods for graphical models
    • Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. Introduction to variational methods for graphical models. Machine Learning, 37:183-233,1999
    • (1999) Machine Learning , vol.37 , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 25
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • Neal, Radford M. Annealed importance sampling. Statistics and Computing, 11 (2): 125-139, 2001
    • (2001) Statistics and Computing , vol.11 , Issue.2 , pp. 125-139
    • Neal Radford, M.1
  • 26
    • 85057196821 scopus 로고    scopus 로고
    • MCMC using hamiltonian dynamics
    • Chapman and Hall/CRC
    • Neal, Radford M. MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo, pp. 113-162. Chapman and Hall/CRC, 2011
    • (2011) Handbook of Markov Chain Monte Carlo , pp. 113-162
    • Neal Radford, M.1
  • 27
    • 79955061011 scopus 로고    scopus 로고
    • Asymptotic analysis for the generalized langevin equation
    • Ottobre, M and Pavliotis, GA. Asymptotic analysis for the generalized Langevin equation. Nonlinearity, 24(5): 1629, 2011
    • (2011) Nonlinearity , vol.24 , Issue.5 , pp. 1629
    • Ottobre, M.1    Pavliotis, G.A.2
  • 30
    • 84969835291 scopus 로고    scopus 로고
    • Markov chain monte carlo and variational inference: Bridging the gap
    • Salimans, Tim, Kingma, Diederik P, Welling, Max, el al. Markov chain Monte Carlo and variational inference: Bridging the gap. In International Conference on Machine teaming, volume 37, pp. 1218-1226, 2015
    • (2015) International Conference on Machine Teaming , vol.37 , pp. 1218-1226
    • Tim, S.1    Kingma Diederik, P.2    Max, W.3
  • 33
    • 84969961962 scopus 로고    scopus 로고
    • A trust-region method for stochastic variational inference with applications to streaming data
    • Theis, Lucas and Hoffman, Matthew D. A trust-region method for stochastic variational inference with applications to streaming data. In International Conference on Machine teaming, pp. 2503-2511, 2015
    • (2015) International Conference on Machine Teaming , pp. 2503-2511
    • Lucas, T.1    Hoffman Matthew, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.