-
1
-
-
85007136193
-
-
arXiv preprint arXiv: 1603.04467
-
Abadi, Martin, Agarwal, Ashish, Barham, Paul, Brevdo, Eugene, Chen, Zhifeng, Citro, Craig, Corrado, Gregory S., Davis, Andy, Dean, Jeffrey, Devin, Matthieu, Ghemawat, Sanjay, Goodfellow, Ian J., Harp, Andrew, Irving, Geoffrey, Isard, Michael, Jia, Yangqing, Józefowicz, Rafal, Kaiser, Lukasz, Kudlur, Manjunath, Levenberg, Josh, Mane, Dan, Monga, Rajat, Moore, Sherry, Murray, Derek Gordon, Olah, Chris, Schuster, Mike, Shlens, Jonathon, Steiner, Benoit, Sutskever, Ilya, Talwar, Kunal, Tucker, Paul A., Vanhoucke, Vincent, Vasudevan, Vijay, Viégas, Fernanda B., Vinyals, Oriol, Warden, Pete, Wattenberg, Martin, Wicke, Martin, Yu, Yuan, and Zheng, Xiaoqiang. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. ArXiv preprint arXiv: 1603.04467, 2016
-
(2016)
TensorFlow: Large-scale Machine Learning on Heterogeneous Distributed Systems
-
-
Martin, A.1
Ashish, A.2
Paul, B.3
Eugene, B.4
Zhifeng, C.5
Craig, C.6
Corrado Gregory, S.7
Andy, D.8
Jeffrey, D.9
Matthieu, D.10
Sanjay, G.11
Goodfellow, J.12
Andrew, H.13
Geoffrey, I.14
Michael, I.15
Yangqing, J.16
Rafal, J.17
Lukasz, K.18
Manjunath, K.19
Josh, L.20
Dan, M.21
Rajat, M.22
Sherry, M.23
Derek Gordon, M.24
Chris, O.25
Mike, S.26
Jonathon, S.27
Benoit, S.28
Ilya, S.29
Kunal, T.30
Tucker Paul, A.31
Vincent, V.32
Vijay, V.33
Viégas Fernanda, B.34
Oriol, V.35
Pete, W.36
Martin, W.37
Martin, W.38
Yuan, Y.39
Xiaoqiang, Z.40
more..
-
4
-
-
0141607824
-
Latent dirichlet allocation
-
January
-
Blei, D., Ng, A., and Jordan, M. Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993-1022, January 2003
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 993-1022
-
-
Blei, D.1
Ng, A.2
Jordan, M.3
-
5
-
-
85072753030
-
Generating sentences from a continuous space
-
Bowman, Samuel R, Vilnis, Luke, Vinyals, Oriol, Dai, Andrew M, Jozefowicz, Rafal, and Bengio, Samy. Generating sentences from a continuous space. CoNLL, pp. 10, 2016
-
(2016)
CoNLL
, pp. 10
-
-
Bowman Samuel, R.1
Luke, V.2
Oriol, V.3
Dai Andrew, M.4
Rafal, J.5
Samy, B.6
-
8
-
-
0013058634
-
Variational mcmc
-
Morgan Kaufmann Publishers Inc
-
De Freitas, Nando, H0jen-S0rensen, Pedro, Jordan, Michael I, and Russell, Stuart. Variational MCMC. In Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence, pp. 120-127. Morgan Kaufmann Publishers Inc., 2001
-
(2001)
Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence
, pp. 120-127
-
-
De Freitas Nando1
Pedro, H.2
Jordan Michael, I.3
Stuart, R.4
-
9
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster, A., Laird, N., and Rubin, D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39:1-38, 1977
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
10
-
-
4243137056
-
Hybrid monte carlo
-
Duane, Simon, Kennedy, Anthony D, Pendleton, Brian J, and Roweth, Duncan. Hybrid monte carlo. Physics letters B, 195(2):216-222, 1987
-
(1987)
Physics Letters B
, vol.195
, Issue.2
, pp. 216-222
-
-
Simon, D.1
Kennedy Anthony, D.2
Pendleton Brian, J.3
Duncan, R.4
-
11
-
-
85059435623
-
Inference from simulations and monitoring convergence
-
Chapman and Hall/CRC
-
Gelman, Andrew and Shirley, Kenneth. Inference from simulations and monitoring convergence. In Handbook of Markov chain Monte Carlo, pp. 163-174. Chapman and Hall/CRC, 2011
-
(2011)
Handbook of Markov Chain Monte Carlo
, pp. 163-174
-
-
Andrew, G.1
Kenneth, S.2
-
12
-
-
85030452031
-
Alternating back-propagation for generator network
-
Han, Tian, Lu, Yang, Zhu, Song-Chun, and Wu, Ying Nian. Alternating back-propagation for generator network. In AAAI Conference on Artificial Intelligence, 2017
-
(2017)
AAAI Conference on Artificial Intelligence
-
-
Tian, H.1
Yang, L.2
Song-Chun, Z.3
Ying Nian, W.4
-
14
-
-
84901687683
-
The no-u-turn sampler: Adaptively setting path lengths in hamiltonian monte carlo
-
Hoffman, Matthew D. And Gelman, Andrew. The no-u-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1):1593-1623, 2014
-
(2014)
Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1593-1623
-
-
Hoffman Matthew, D.1
Andrew, G.2
-
15
-
-
0033225865
-
Introduction to variational methods for graphical models
-
Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. Introduction to variational methods for graphical models. Machine Learning, 37:183-233,1999
-
(1999)
Machine Learning
, vol.37
, pp. 183-233
-
-
Jordan, M.1
Ghahramani, Z.2
Jaakkola, T.3
Saul, L.4
-
25
-
-
0000273048
-
Annealed importance sampling
-
Neal, Radford M. Annealed importance sampling. Statistics and Computing, 11 (2): 125-139, 2001
-
(2001)
Statistics and Computing
, vol.11
, Issue.2
, pp. 125-139
-
-
Neal Radford, M.1
-
26
-
-
85057196821
-
MCMC using hamiltonian dynamics
-
Chapman and Hall/CRC
-
Neal, Radford M. MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo, pp. 113-162. Chapman and Hall/CRC, 2011
-
(2011)
Handbook of Markov Chain Monte Carlo
, pp. 113-162
-
-
Neal Radford, M.1
-
27
-
-
79955061011
-
Asymptotic analysis for the generalized langevin equation
-
Ottobre, M and Pavliotis, GA. Asymptotic analysis for the generalized Langevin equation. Nonlinearity, 24(5): 1629, 2011
-
(2011)
Nonlinearity
, vol.24
, Issue.5
, pp. 1629
-
-
Ottobre, M.1
Pavliotis, G.A.2
-
30
-
-
84969835291
-
Markov chain monte carlo and variational inference: Bridging the gap
-
Salimans, Tim, Kingma, Diederik P, Welling, Max, el al. Markov chain Monte Carlo and variational inference: Bridging the gap. In International Conference on Machine teaming, volume 37, pp. 1218-1226, 2015
-
(2015)
International Conference on Machine Teaming
, vol.37
, pp. 1218-1226
-
-
Tim, S.1
Kingma Diederik, P.2
Max, W.3
-
31
-
-
85019264158
-
Ladder variational autoencoders
-
S0nderby, Casper Kaae, Raiko, Tapani, Maal0e, Lars, S0nderby, S0ren Kaae, and Winther, Ole. Ladder variational autoencoders. In Advances in Neural Information Processing Systems, pp. 3738-3746, 2016
-
(2016)
Advances in Neural Information Processing Systems
, pp. 3738-3746
-
-
Casper Kaae, S.1
Tapani, R.2
Lars, M.3
Soren Kaae, S.4
Ole, W.5
-
32
-
-
85083950260
-
A note on the evaluation of generative models
-
Theis, L., van den Oord, A., and Bethge, M. A note on the evaluation of generative models. In International Conference on teaming Representations, Apr 2016. URL http://arxiv.org/abs/1511.01844
-
International Conference on Teaming Representations, Apr 2016. URL
-
-
Theis, L.1
Van Den Oord, A.2
Bethge, M.3
-
33
-
-
84969961962
-
A trust-region method for stochastic variational inference with applications to streaming data
-
Theis, Lucas and Hoffman, Matthew D. A trust-region method for stochastic variational inference with applications to streaming data. In International Conference on Machine teaming, pp. 2503-2511, 2015
-
(2015)
International Conference on Machine Teaming
, pp. 2503-2511
-
-
Lucas, T.1
Hoffman Matthew, D.2
-
36
-
-
85048440764
-
-
arXiv preprint arXiv: 1611.04273
-
Wu, Yuhuai, Burda, Yuri, Salakhutdinov, Ruslan, and Grosse, Roger. On the quantitative analysis of decoder-based generative models. ArXiv preprint arXiv:1611.04273, 2016.
-
(2016)
On the Quantitative Analysis of Decoder-based Generative Models
-
-
Yuhuai, W.1
Yuri, B.2
Ruslan, S.3
Roger, G.4
|