-
3
-
-
84878919168
-
Stochastic variational inference
-
M Hoffman, D Blei, Chong Wang, and John Paisley. Stochastic variational inference. Journal of Machine Learning Research, 14:1303-1347, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 1303-1347
-
-
Hoffman, M.1
Blei, D.2
Wang, C.3
Paisley, J.4
-
4
-
-
79551487646
-
Approximate riemannian conjugate gradient learning for fixed-form variational bayes
-
Antti Honkela, Tapani Raiko, Mikael Kuusela, Matti Tornio, and Juha Karhunen. Approximate riemannian conjugate gradient learning for fixed-form variational bayes. The Journal of Machine Learning Research, 9999:3235-3268, 2010.
-
(2010)
The Journal of Machine Learning Research
, vol.9999
, pp. 3235-3268
-
-
Honkela, A.1
Raiko, T.2
Kuusela, M.3
Tornio, M.4
Karhunen, J.5
-
6
-
-
25444528713
-
Assessing approximate inference for binary Gaussian process classification
-
Malte Kuss and Carl Edward Rasmussen. Assessing approximate inference for binary Gaussian process classification. The Journal of Machine Learning Research, 6:1679-1704, 2005.
-
(2005)
The Journal of Machine Learning Research
, vol.6
, pp. 1679-1704
-
-
Kuss, M.1
Rasmussen, C.E.2
-
7
-
-
0345978970
-
Expectation propagation for approximate Bayesian inference
-
Jack S. Breese and Daphne Koller, editors San Francisco, CA Morgan Kauffman
-
Thomas P. Minka. Expectation propagation for approximate Bayesian inference. In Jack S. Breese and Daphne Koller, editors, Uncertainty in Artificial Intelligence, Volume 17, San Francisco, CA, 2001. Morgan Kauffman.
-
(2001)
Uncertainty in Artificial Intelligence
, vol.17
-
-
Minka, T.P.1
-
9
-
-
0342502195
-
Soft margins for adaboost
-
T Onoda, G Rätsch, and KR Müller. Soft margins for adaboost. Machine Learning, 42(3):287-320, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Onoda, T.1
Rätsch, G.2
Müller, K.R.3
-
13
-
-
27844592624
-
Variational inference for student-t models: Robust Bayesian interpolation and generalised component analysis
-
Michael E Tipping and Neil D Lawrence. Variational inference for student-t models: Robust bayesian interpolation and generalised component analysis. Neurocomputing, 69(1):123-141, 2005.
-
(2005)
Neurocomputing
, vol.69
, Issue.1
, pp. 123-141
-
-
Tipping, M.E.1
Lawrence, N.D.2
-
14
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends® in Machine Learning, 1(1-2):1-305, 2008.
-
(2008)
Foundations and Trends® in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
15
-
-
85156191859
-
Bayesian methods for mixtures of experts
-
David Touretzky, Michael Mozer, and Mark Hasselmo, editors Cambridge, MA MIT Press
-
Steve Waterhouse, David J. C. MacKay, and Tony Robinson. Bayesian methods for mixtures of experts. In David Touretzky, Michael Mozer, and Mark Hasselmo, editors, Advances in Neural Information Processing Systems, Volume 8, pages 351-357, Cambridge, MA, 1996. MIT Press.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 351-357
-
-
Waterhouse, S.1
MacKay, D.J.C.2
Robinson, T.3
-
17
-
-
0031345518
-
Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization
-
Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software (TOMS), 23(4):550-560, 1997.
-
(1997)
ACM Transactions on Mathematical Software (TOMS)
, vol.23
, Issue.4
, pp. 550-560
-
-
Zhu, C.1
Byrd, R.H.2
Lu, P.3
Nocedal, J.4
|