메뉴 건너뛰기




Volumn 2017-December, Issue , 2017, Pages 6295-6306

Learned in translation: Contextualized word vectors

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; NATURAL LANGUAGE PROCESSING SYSTEMS; SENTIMENT ANALYSIS; VECTORS;

EID: 85047011411     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (897)

References (71)
  • 2
    • 85083953689 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate
    • D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. In ICLR, 2015.
    • (2015) ICLR
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 3
    • 84943797422 scopus 로고    scopus 로고
    • Recursive neural networks for learning logical semantics
    • S. R. Bowman, C. Potts, and C. D. Manning. Recursive neural networks for learning logical semantics. CoRR, abs/1406.1827, 2014.
    • (2014) CoRR
    • Bowman, S.R.1    Potts, C.2    Manning, C.D.3
  • 6
    • 85021639554 scopus 로고    scopus 로고
    • Enhancing and combining sequential and tree LSTM for natural language inference
    • Q. Chen, X.-D. Zhu, Z.-H. Ling, S. Wei, and H. Jiang. Enhancing and combining sequential and tree LSTM for natural language inference. CoRR, abs/1609.06038, 2016.
    • (2016) CoRR
    • Chen, Q.1    Zhu, X.-D.2    Ling, Z.-H.3    Wei, S.4    Jiang, H.5
  • 9
    • 79956078298 scopus 로고    scopus 로고
    • From symbolic to sub-symbolic information in question classification
    • J. P. C. G. da Silva, L. Coheur, A. C. Mendes, and A. Wichert. From symbolic to sub-symbolic information in question classification. Artif. Intell. Rev., 35: 137-154, 2011.
    • (2011) Artif. Intell. Rev. , vol.35 , pp. 137-154
    • Da Silva, J.P.C.G.1    Coheur, L.2    Mendes, A.C.3    Wichert, A.4
  • 10
    • 84965138788 scopus 로고    scopus 로고
    • Semi-supervised sequence learning
    • A. M. Dai and Q. V. Le. Semi-supervised sequence learning. In NIPS, 2015.
    • (2015) NIPS
    • Dai, A.M.1    Le, Q.V.2
  • 12
    • 85048470009 scopus 로고    scopus 로고
    • TopicRNN: A recurrent neural network with long-range semantic dependency
    • A. B. Dieng, C. Wang, J. Gao, and J. W. Paisley. TopicRNN: A recurrent neural network with long-range semantic dependency. CoRR, abs/1611.01702, 2016.
    • (2016) CoRR
    • Dieng, A.B.1    Wang, C.2    Gao, J.3    Paisley, J.W.4
  • 13
    • 85040945350 scopus 로고    scopus 로고
    • Language to logical form with neural attention
    • L. Dong and M. Lapata. Language to logical form with neural attention. CoRR, abs/1601.01280, 2016.
    • (2016) CoRR
    • Dong, L.1    Lapata, M.2
  • 17
    • 27744588611 scopus 로고    scopus 로고
    • Framewise phoneme classification with bidirectional LSTM and other neural network architectures
    • A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5): 602-610, 2005.
    • (2005) Neural Networks , vol.18 , Issue.5 , pp. 602-610
    • Graves, A.1    Schmidhuber, J.2
  • 18
    • 85047000494 scopus 로고    scopus 로고
    • End-to-end multi-view networks for text classification
    • H. Guo, C. Cherry, and J. Su. End-to-end multi-view networks for text classification. CoRR, abs/1704.05907, 2017.
    • (2017) CoRR
    • Guo, H.1    Cherry, C.2    Su, J.3
  • 19
    • 85040917782 scopus 로고    scopus 로고
    • A joint many-task model: Growing a neural network for multiple NLP tasks
    • K. Hashimoto, C. Xiong, Y. Tsuruoka, and R. Socher. A joint many-task model: Growing a neural network for multiple NLP tasks. CoRR, abs/1611.01587, 2016.
    • (2016) CoRR
    • Hashimoto, K.1    Xiong, C.2    Tsuruoka, Y.3    Socher, R.4
  • 21
    • 84994157681 scopus 로고    scopus 로고
    • Learning distributed representations of sentences from unlabelled data
    • F. Hill, K. Cho, and A. Korhonen. Learning distributed representations of sentences from unlabelled data. In HLT-NAACL, 2016.
    • (2016) HLT-NAACL
    • Hill, F.1    Cho, K.2    Korhonen, A.3
  • 22
    • 85018330619 scopus 로고    scopus 로고
    • The representational geometry of word meanings acquired by neural machine translation models
    • F. Hill, K. Cho, S. Jean, and Y. Bengio. The representational geometry of word meanings acquired by neural machine translation models. Machine Translation, pages 1-16, 2017. ISSN 1573-0573. doi: 10.1007/s10590-017-9194-2. URL http://dx.doi.org/10.1007/s10590-017-9194-2.
    • (2017) Machine Translation , pp. 1-16
    • Hill, F.1    Cho, K.2    Jean, S.3    Bengio, Y.4
  • 23
    • 85027058618 scopus 로고    scopus 로고
    • Encoding syntactic knowledge in neural networks for sentiment classification
    • M. Huang, Q. Qian, and X. Zhu. Encoding syntactic knowledge in neural networks for sentiment classification. ACM Trans. Inf. Syst., 35: 26:1-26:27, 2017.
    • (2017) ACM Trans. Inf. Syst. , vol.35 , pp. 261-2627
    • Huang, M.1    Qian, Q.2    Zhu, X.3
  • 24
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 25
    • 84998953478 scopus 로고    scopus 로고
    • Supervised and semi-supervised text categorization using LSTM for region embeddings
    • R. Johnson and T. Zhang. Supervised and semi-supervised text categorization using LSTM for region embeddings. In ICML, 2016.
    • (2016) ICML
    • Johnson, R.1    Zhang, T.2
  • 31
    • 33746393719 scopus 로고    scopus 로고
    • Learning question classifiers: The role of semantic information
    • X. Li and D. Roth. Learning question classifiers: The role of semantic information. Natural Language Engineering, 12: 229-249, 2006.
    • (2006) Natural Language Engineering , vol.12 , pp. 229-249
    • Li, X.1    Roth, D.2
  • 32
    • 85047021260 scopus 로고    scopus 로고
    • Question classification by weighted combination of lexical, syntactic and semantic features
    • B. Loni, G. van Tulder, P. Wiggers, D. M. J. Tax, and M. Loog. Question classification by weighted combination of lexical, syntactic and semantic features. In TSD, 2011.
    • (2011) TSD
    • Loni, B.1    Van Tulder, G.2    Wiggers, P.3    Tax, D.M.J.4    Loog, M.5
  • 33
  • 35
    • 84959874994 scopus 로고    scopus 로고
    • Effective approaches to attention-based neural machine translation
    • T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based neural machine translation. In EMNLP, 2015.
    • (2015) EMNLP
    • Luong, T.1    Pham, H.2    Manning, C.D.3
  • 37
    • 85047009852 scopus 로고    scopus 로고
    • High accuracy rule-based question classification using question syntax and semantics
    • H. T. Madabushi and M. Lee. High accuracy rule-based question classification using question syntax and semantics. In COLING, 2016.
    • (2016) COLING
    • Madabushi, H.T.1    Lee, M.2
  • 38
    • 85083951332 scopus 로고    scopus 로고
    • Efficient estimation of word representations in vector space
    • T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. In ICLR (workshop), 2013.
    • (2013) ICLR (workshop)
    • Mikolov, T.1    Chen, K.2    Corrado, G.3    Dean, J.4
  • 41
    • 84959888619 scopus 로고    scopus 로고
    • Discriminative neural sentence modeling by tree-based convolution
    • L. Mou, H. Peng, G. Li, Y. Xu, L. Zhang, and Z. Jin. Discriminative neural sentence modeling by tree-based convolution. In EMNLP, 2015.
    • (2015) EMNLP
    • Mou, L.1    Peng, H.2    Li, G.3    Xu, Y.4    Zhang, L.5    Jin, Z.6
  • 42
    • 85046995439 scopus 로고    scopus 로고
    • Neural semantic encoders
    • T. Munkhdalai and H. Yu. Neural semantic encoders. CoRR, abs/1607.04315, 2016a.
    • (2016) CoRR
    • Munkhdalai, T.1    Yu, H.2
  • 43
    • 85046995439 scopus 로고    scopus 로고
    • Neural tree indexers for text understanding
    • T. Munkhdalai and H. Yu. Neural tree indexers for text understanding. CoRR, abs/1607.04492, 2016b.
    • (2016) CoRR
    • Munkhdalai, T.1    Yu, H.2
  • 44
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. In ICML, 2010.
    • (2010) ICML
    • Nair, V.1    Hinton, G.E.2
  • 45
    • 85052503865 scopus 로고    scopus 로고
    • Abstractive text summarization using sequence-to-sequence RNNs and beyond
    • R. Nallapati, B. Zhou, C. N. dos Santos, Çaglar Gülçehre, and B. Xiang. Abstractive text summarization using sequence-to-sequence RNNs and beyond. In CoNLL, 2016.
    • (2016) CoNLL
    • Nallapati, R.1    Zhou, B.2    Dos Santos, C.N.3    Gülçehre, C.4    Xiang, B.5
  • 46
    • 85047010569 scopus 로고    scopus 로고
    • A neural architecture mimicking humans end-to-end for natural language inference
    • B. Paria, K. M. Annervaz, A. Dukkipati, A. Chatterjee, and S. Podder. A neural architecture mimicking humans end-to-end for natural language inference. CoRR, abs/1611.04741, 2016.
    • (2016) CoRR
    • Paria, B.1    Annervaz, K.M.2    Dukkipati, A.3    Chatterjee, A.4    Podder, S.5
  • 47
    • 85072820995 scopus 로고    scopus 로고
    • A decomposable attention model for natural language inference
    • A. P. Parikh, O. Tackstrom, D. Das, and J. Uszkoreit. A decomposable attention model for natural language inference. In EMNLP, 2016.
    • (2016) EMNLP
    • Parikh, A.P.1    Tackstrom, O.2    Das, D.3    Uszkoreit, J.4
  • 48
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP, 2014.
    • (2014) EMNLP
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 50
    • 85041090883 scopus 로고    scopus 로고
    • Learning to generate reviews and discovering sentiment
    • A. Radford, R. Józefowicz, and I. Sutskever. Learning to generate reviews and discovering sentiment. CoRR, abs/1704.01444, 2017.
    • (2017) CoRR
    • Radford, A.1    Józefowicz, R.2    Sutskever, I.3
  • 52
    • 85047004228 scopus 로고    scopus 로고
    • Unsupervised pretraining for sequence to sequence learning
    • P. Ramachandran, P. J. Liu, and Q. V. Le. Unsupervised pretraining for sequence to sequence learning. CoRR, abs/1611.02683, 2016.
    • (2016) CoRR
    • Ramachandran, P.1    Liu, P.J.2    Le, Q.V.3
  • 53
    • 80052906503 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In ECCV, 2010.
    • (2010) ECCV
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 54
    • 85073246496 scopus 로고    scopus 로고
    • Bidirectional attention flow for machine comprehension
    • M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. Bidirectional attention flow for machine comprehension. ICLR, 2017.
    • (2017) ICLR
    • Seo, M.1    Kembhavi, A.2    Farhadi, A.3    Hajishirzi, H.4
  • 55
    • 85031900378 scopus 로고    scopus 로고
    • Reading and thinking: Re-read LSTM unit for textual entailment recognition
    • L. Sha, B. Chang, Z. Sui, and S. Li. Reading and thinking: Re-read LSTM unit for textual entailment recognition. In COLING, 2016.
    • (2016) COLING
    • Sha, L.1    Chang, B.2    Sui, Z.3    Li, S.4
  • 58
    • 84906925854 scopus 로고    scopus 로고
    • Grounded compositional semantics for finding and describing images with sentences
    • R. Socher, A. Karpathy, Q. V. Le, C. D. Manning, and A. Y. Ng. Grounded compositional semantics for finding and describing images with sentences. In ACL, 2014.
    • (2014) ACL
    • Socher, R.1    Karpathy, A.2    Le, Q.V.3    Manning, C.D.4    Ng, A.Y.5
  • 59
    • 85021198194 scopus 로고    scopus 로고
    • A shared task on multimodal machine translation and crosslingual image description
    • L. Specia, S. Frank, K. Sima'an, and D. Elliott. A shared task on multimodal machine translation and crosslingual image description. In WMT, 2016.
    • (2016) WMT
    • Specia, L.1    Frank, S.2    Sima'an, K.3    Elliott, D.4
  • 60
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, 2014.
    • (2014) NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 61
    • 84969929993 scopus 로고    scopus 로고
    • Improving question classification by feature extraction and selection
    • N. Van-Tu and L. Anh-Cuong. Improving question classification by feature extraction and selection. Indian Journal of Science and Technology, 9(17), 2016.
    • (2016) Indian Journal of Science and Technology , vol.9 , Issue.17
    • Van-Tu, N.1    Anh-Cuong, L.2
  • 62
    • 1642319586 scopus 로고    scopus 로고
    • The TREC-8 question answering track evaluation
    • E. M. Voorhees and D. M. Tice. The TREC-8 question answering track evaluation. In TREC, Volume 1999, page 82, 1999.
    • (1999) TREC , vol.1999 , pp. 82
    • Voorhees, E.M.1    Tice, D.M.2
  • 65
    • 85074228266 scopus 로고    scopus 로고
    • Towards universal paraphrastic sentence embeddings
    • J. Wieting, M. Bansal, K. Gimpel, and K. Livescu. Towards universal paraphrastic sentence embeddings. In ICLR, 2016.
    • (2016) ICLR
    • Wieting, J.1    Bansal, M.2    Gimpel, K.3    Livescu, K.4
  • 67
    • 85071127938 scopus 로고    scopus 로고
    • Dynamic coattention networks for question answering
    • C. Xiong, V. Zhong, and R. Socher. Dynamic coattention networks for question answering. ICRL, 2017.
    • (2017) ICRL
    • Xiong, C.1    Zhong, V.2    Socher, R.3
  • 68
    • 85047008855 scopus 로고    scopus 로고
    • End-to-end reading comprehension with dynamic answer chunk ranking
    • Y. Yu, W. Zhang, K. Hasan, M. Yu, B. Xiang, and B. Zhou. End-to-end reading comprehension with dynamic answer chunk ranking. ICLR, 2017.
    • (2017) ICLR
    • Yu, Y.1    Zhang, W.2    Hasan, K.3    Yu, M.4    Xiang, B.5    Zhou, B.6
  • 69
    • 84994113241 scopus 로고    scopus 로고
    • Dependency sensitive convolutional neural networks for modeling sentences and documents
    • R. Zhang, H. Lee, and D. R. Radev. Dependency sensitive convolutional neural networks for modeling sentences and documents. In HLT-NAACL, 2016.
    • (2016) HLT-NAACL
    • Zhang, R.1    Lee, H.2    Radev, D.R.3
  • 70
    • 85054981994 scopus 로고    scopus 로고
    • Text classification improved by integrating bidirectional LSTM with two-dimensional max pooling
    • P. Zhou, Z. Qi, S. Zheng, J. Xu, H. Bao, and B. Xu. Text classification improved by integrating bidirectional LSTM with two-dimensional max pooling. In COLING, 2016.
    • (2016) COLING
    • Zhou, P.1    Qi, Z.2    Zheng, S.3    Xu, J.4    Bao, H.5    Xu, B.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.