-
1
-
-
85111042155
-
SemEval-2014 task 10: Multilingual semantic textual similarity
-
E. Agirre, C. Banea, C. Cardie, D. M. Cer, M. T. Diab, A. Gonzalez-Agirre, W. Guo, R. Mihalcea, G. Rigau, and J. Wiebe. SemEval-2014 Task 10: Multilingual semantic textual similarity. In SemEval@COLING, 2014.
-
(2014)
SemEval@COLING
-
-
Agirre, E.1
Banea, C.2
Cardie, C.3
Cer, D.M.4
Diab, M.T.5
Gonzalez-Agirre, A.6
Guo, W.7
Mihalcea, R.8
Rigau, G.9
Wiebe, J.10
-
2
-
-
85083953689
-
Neural machine translation by jointly learning to align and translate
-
D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. In ICLR, 2015.
-
(2015)
ICLR
-
-
Bahdanau, D.1
Cho, K.2
Bengio, Y.3
-
3
-
-
84943797422
-
Recursive neural networks for learning logical semantics
-
S. R. Bowman, C. Potts, and C. D. Manning. Recursive neural networks for learning logical semantics. CoRR, abs/1406.1827, 2014.
-
(2014)
CoRR
-
-
Bowman, S.R.1
Potts, C.2
Manning, C.D.3
-
5
-
-
85034750531
-
The IWSLT 2015 evaluation campaign
-
M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, R. Cattoni, and M. Federico. The IWSLT 2015 evaluation campaign. In IWSLT, 2015.
-
(2015)
IWSLT
-
-
Cettolo, M.1
Niehues, J.2
Stüker, S.3
Bentivogli, L.4
Cattoni, R.5
Federico, M.6
-
6
-
-
85021639554
-
Enhancing and combining sequential and tree LSTM for natural language inference
-
Q. Chen, X.-D. Zhu, Z.-H. Ling, S. Wei, and H. Jiang. Enhancing and combining sequential and tree LSTM for natural language inference. CoRR, abs/1609.06038, 2016.
-
(2016)
CoRR
-
-
Chen, Q.1
Zhu, X.-D.2
Ling, Z.-H.3
Wei, S.4
Jiang, H.5
-
7
-
-
80053558787
-
Natural language processing (almost) from scratch
-
R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural language processing (almost) from scratch. JMLR, 12: 2493-2537, 2011.
-
(2011)
JMLR
, vol.12
, pp. 2493-2537
-
-
Collobert, R.1
Weston, J.2
Bottou, L.3
Karlen, M.4
Kavukcuoglu, K.5
Kuksa, P.6
-
8
-
-
85068046401
-
-
A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes. Supervised learning of universal sentence representations from natural language inference data. arXiv preprint arXiv: 1705.02364, 2017.
-
(2017)
Supervised Learning of Universal Sentence Representations from Natural Language Inference Data
-
-
Conneau, A.1
Kiela, D.2
Schwenk, H.3
Barrault, L.4
Bordes, A.5
-
9
-
-
79956078298
-
From symbolic to sub-symbolic information in question classification
-
J. P. C. G. da Silva, L. Coheur, A. C. Mendes, and A. Wichert. From symbolic to sub-symbolic information in question classification. Artif. Intell. Rev., 35: 137-154, 2011.
-
(2011)
Artif. Intell. Rev.
, vol.35
, pp. 137-154
-
-
Da Silva, J.P.C.G.1
Coheur, L.2
Mendes, A.C.3
Wichert, A.4
-
10
-
-
84965138788
-
Semi-supervised sequence learning
-
A. M. Dai and Q. V. Le. Semi-supervised sequence learning. In NIPS, 2015.
-
(2015)
NIPS
-
-
Dai, A.M.1
Le, Q.V.2
-
11
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248-255, 2009.
-
(2009)
2009 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
12
-
-
85048470009
-
TopicRNN: A recurrent neural network with long-range semantic dependency
-
A. B. Dieng, C. Wang, J. Gao, and J. W. Paisley. TopicRNN: A recurrent neural network with long-range semantic dependency. CoRR, abs/1611.01702, 2016.
-
(2016)
CoRR
-
-
Dieng, A.B.1
Wang, C.2
Gao, J.3
Paisley, J.W.4
-
13
-
-
85040945350
-
Language to logical form with neural attention
-
L. Dong and M. Lapata. Language to logical form with neural attention. CoRR, abs/1601.01280, 2016.
-
(2016)
CoRR
-
-
Dong, L.1
Lapata, M.2
-
14
-
-
84990060711
-
-
A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and M. Rohrbach. Multimodal compact bilinear pooling for visual question answering and visual grounding. arXiv preprint arXiv: 1606.01847, 2016.
-
(2016)
Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding
-
-
Fukui, A.1
Park, D.H.2
Yang, D.3
Rohrbach, A.4
Darrell, T.5
Rohrbach, M.6
-
15
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 580-587, 2014.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
16
-
-
84897543523
-
Maxout networks
-
I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and Y. Bengio. Maxout networks. In ICML, 2013.
-
(2013)
ICML
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.C.4
Bengio, Y.5
-
17
-
-
27744588611
-
Framewise phoneme classification with bidirectional LSTM and other neural network architectures
-
A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5): 602-610, 2005.
-
(2005)
Neural Networks
, vol.18
, Issue.5
, pp. 602-610
-
-
Graves, A.1
Schmidhuber, J.2
-
18
-
-
85047000494
-
End-to-end multi-view networks for text classification
-
H. Guo, C. Cherry, and J. Su. End-to-end multi-view networks for text classification. CoRR, abs/1704.05907, 2017.
-
(2017)
CoRR
-
-
Guo, H.1
Cherry, C.2
Su, J.3
-
19
-
-
85040917782
-
A joint many-task model: Growing a neural network for multiple NLP tasks
-
K. Hashimoto, C. Xiong, Y. Tsuruoka, and R. Socher. A joint many-task model: Growing a neural network for multiple NLP tasks. CoRR, abs/1611.01587, 2016.
-
(2016)
CoRR
-
-
Hashimoto, K.1
Xiong, C.2
Tsuruoka, Y.3
Socher, R.4
-
20
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770-778, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
21
-
-
84994157681
-
Learning distributed representations of sentences from unlabelled data
-
F. Hill, K. Cho, and A. Korhonen. Learning distributed representations of sentences from unlabelled data. In HLT-NAACL, 2016.
-
(2016)
HLT-NAACL
-
-
Hill, F.1
Cho, K.2
Korhonen, A.3
-
22
-
-
85018330619
-
The representational geometry of word meanings acquired by neural machine translation models
-
F. Hill, K. Cho, S. Jean, and Y. Bengio. The representational geometry of word meanings acquired by neural machine translation models. Machine Translation, pages 1-16, 2017. ISSN 1573-0573. doi: 10.1007/s10590-017-9194-2. URL http://dx.doi.org/10.1007/s10590-017-9194-2.
-
(2017)
Machine Translation
, pp. 1-16
-
-
Hill, F.1
Cho, K.2
Jean, S.3
Bengio, Y.4
-
23
-
-
85027058618
-
Encoding syntactic knowledge in neural networks for sentiment classification
-
M. Huang, Q. Qian, and X. Zhu. Encoding syntactic knowledge in neural networks for sentiment classification. ACM Trans. Inf. Syst., 35: 26:1-26:27, 2017.
-
(2017)
ACM Trans. Inf. Syst.
, vol.35
, pp. 261-2627
-
-
Huang, M.1
Qian, Q.2
Zhu, X.3
-
24
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
25
-
-
84998953478
-
Supervised and semi-supervised text categorization using LSTM for region embeddings
-
R. Johnson and T. Zhang. Supervised and semi-supervised text categorization using LSTM for region embeddings. In ICML, 2016.
-
(2016)
ICML
-
-
Johnson, R.1
Zhang, T.2
-
26
-
-
84965153327
-
Skip-thought vectors
-
R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, R. Urtasun, A. Torralba, and S. Fidler. Skip-thought vectors. In NIPS, 2015.
-
(2015)
NIPS
-
-
Kiros, R.1
Zhu, Y.2
Salakhutdinov, R.3
Zemel, R.S.4
Urtasun, R.5
Torralba, A.6
Fidler, S.7
-
27
-
-
85013153663
-
-
ArXiv e-prints
-
G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. OpenNMT: Open-source toolkit for neural machine translation. ArXiv e-prints, 2017.
-
(2017)
OpenNMT: Open-source Toolkit for Neural Machine Translation
-
-
Klein, G.1
Kim, Y.2
Deng, Y.3
Senellart, J.4
Rush, A.M.5
-
28
-
-
85110867932
-
Moses: Open source toolkit for statistical machine translation
-
P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst. Moses: Open source toolkit for statistical machine translation. In ACL, 2007.
-
(2007)
ACL
-
-
Koehn, P.1
Hoang, H.2
Birch, A.3
Callison-Burch, C.4
Federico, M.5
Bertoldi, N.6
Cowan, B.7
Shen, W.8
Moran, C.9
Zens, R.10
Dyer, C.11
Bojar, O.12
Constantin, A.13
Herbst, E.14
-
30
-
-
84998698731
-
Ask me anything: Dynamic memory networks for natural language processing
-
A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani, V. Zhong, R. Paulus, and R. Socher. Ask me anything: Dynamic memory networks for natural language processing. In ICML, 2016.
-
(2016)
ICML
-
-
Kumar, A.1
Irsoy, O.2
Ondruska, P.3
Iyyer, M.4
Bradbury, J.5
Gulrajani, I.6
Zhong, V.7
Paulus, R.8
Socher, R.9
-
31
-
-
33746393719
-
Learning question classifiers: The role of semantic information
-
X. Li and D. Roth. Learning question classifiers: The role of semantic information. Natural Language Engineering, 12: 229-249, 2006.
-
(2006)
Natural Language Engineering
, vol.12
, pp. 229-249
-
-
Li, X.1
Roth, D.2
-
32
-
-
85047021260
-
Question classification by weighted combination of lexical, syntactic and semantic features
-
B. Loni, G. van Tulder, P. Wiggers, D. M. J. Tax, and M. Loog. Question classification by weighted combination of lexical, syntactic and semantic features. In TSD, 2011.
-
(2011)
TSD
-
-
Loni, B.1
Van Tulder, G.2
Wiggers, P.3
Tax, D.M.J.4
Loog, M.5
-
35
-
-
84959874994
-
Effective approaches to attention-based neural machine translation
-
T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based neural machine translation. In EMNLP, 2015.
-
(2015)
EMNLP
-
-
Luong, T.1
Pham, H.2
Manning, C.D.3
-
36
-
-
84859023447
-
Learning word vectors for sentiment analysis
-
Portland, Oregon, USA, June
-
A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 142-150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P11-1015.
-
(2011)
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies
, pp. 142-150
-
-
Maas, A.L.1
Daly, R.E.2
Pham, P.T.3
Huang, D.4
Ng, A.Y.5
Potts, C.6
-
37
-
-
85047009852
-
High accuracy rule-based question classification using question syntax and semantics
-
H. T. Madabushi and M. Lee. High accuracy rule-based question classification using question syntax and semantics. In COLING, 2016.
-
(2016)
COLING
-
-
Madabushi, H.T.1
Lee, M.2
-
41
-
-
84959888619
-
Discriminative neural sentence modeling by tree-based convolution
-
L. Mou, H. Peng, G. Li, Y. Xu, L. Zhang, and Z. Jin. Discriminative neural sentence modeling by tree-based convolution. In EMNLP, 2015.
-
(2015)
EMNLP
-
-
Mou, L.1
Peng, H.2
Li, G.3
Xu, Y.4
Zhang, L.5
Jin, Z.6
-
42
-
-
85046995439
-
Neural semantic encoders
-
T. Munkhdalai and H. Yu. Neural semantic encoders. CoRR, abs/1607.04315, 2016a.
-
(2016)
CoRR
-
-
Munkhdalai, T.1
Yu, H.2
-
43
-
-
85046995439
-
Neural tree indexers for text understanding
-
T. Munkhdalai and H. Yu. Neural tree indexers for text understanding. CoRR, abs/1607.04492, 2016b.
-
(2016)
CoRR
-
-
Munkhdalai, T.1
Yu, H.2
-
44
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. In ICML, 2010.
-
(2010)
ICML
-
-
Nair, V.1
Hinton, G.E.2
-
45
-
-
85052503865
-
Abstractive text summarization using sequence-to-sequence RNNs and beyond
-
R. Nallapati, B. Zhou, C. N. dos Santos, Çaglar Gülçehre, and B. Xiang. Abstractive text summarization using sequence-to-sequence RNNs and beyond. In CoNLL, 2016.
-
(2016)
CoNLL
-
-
Nallapati, R.1
Zhou, B.2
Dos Santos, C.N.3
Gülçehre, C.4
Xiang, B.5
-
46
-
-
85047010569
-
A neural architecture mimicking humans end-to-end for natural language inference
-
B. Paria, K. M. Annervaz, A. Dukkipati, A. Chatterjee, and S. Podder. A neural architecture mimicking humans end-to-end for natural language inference. CoRR, abs/1611.04741, 2016.
-
(2016)
CoRR
-
-
Paria, B.1
Annervaz, K.M.2
Dukkipati, A.3
Chatterjee, A.4
Podder, S.5
-
47
-
-
85072820995
-
A decomposable attention model for natural language inference
-
A. P. Parikh, O. Tackstrom, D. Das, and J. Uszkoreit. A decomposable attention model for natural language inference. In EMNLP, 2016.
-
(2016)
EMNLP
-
-
Parikh, A.P.1
Tackstrom, O.2
Das, D.3
Uszkoreit, J.4
-
49
-
-
84986246054
-
Hedged deep tracking
-
Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, and M.-H. Yang. Hedged deep tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4303-4311, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 4303-4311
-
-
Qi, Y.1
Zhang, S.2
Qin, L.3
Yao, H.4
Huang, Q.5
Lim, J.6
Yang, M.-H.7
-
50
-
-
85041090883
-
Learning to generate reviews and discovering sentiment
-
A. Radford, R. Józefowicz, and I. Sutskever. Learning to generate reviews and discovering sentiment. CoRR, abs/1704.01444, 2017.
-
(2017)
CoRR
-
-
Radford, A.1
Józefowicz, R.2
Sutskever, I.3
-
51
-
-
85009347221
-
-
P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. SQuAD: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv: 1606.05250, 2016.
-
(2016)
SQuAD: 100,000+ Questions for Machine Comprehension of Text
-
-
Rajpurkar, P.1
Zhang, J.2
Lopyrev, K.3
Liang, P.4
-
52
-
-
85047004228
-
Unsupervised pretraining for sequence to sequence learning
-
P. Ramachandran, P. J. Liu, and Q. V. Le. Unsupervised pretraining for sequence to sequence learning. CoRR, abs/1611.02683, 2016.
-
(2016)
CoRR
-
-
Ramachandran, P.1
Liu, P.J.2
Le, Q.V.3
-
55
-
-
85031900378
-
Reading and thinking: Re-read LSTM unit for textual entailment recognition
-
L. Sha, B. Chang, Z. Sui, and S. Li. Reading and thinking: Re-read LSTM unit for textual entailment recognition. In COLING, 2016.
-
(2016)
COLING
-
-
Sha, L.1
Chang, B.2
Sui, Z.3
Li, S.4
-
57
-
-
84926358845
-
Recursive deep models for semantic compositionality over a sentiment treebank
-
R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, and C. Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP, 2013.
-
(2013)
EMNLP
-
-
Socher, R.1
Perelygin, A.2
Wu, J.3
Chuang, J.4
Manning, C.5
Ng, A.6
Potts, C.7
-
58
-
-
84906925854
-
Grounded compositional semantics for finding and describing images with sentences
-
R. Socher, A. Karpathy, Q. V. Le, C. D. Manning, and A. Y. Ng. Grounded compositional semantics for finding and describing images with sentences. In ACL, 2014.
-
(2014)
ACL
-
-
Socher, R.1
Karpathy, A.2
Le, Q.V.3
Manning, C.D.4
Ng, A.Y.5
-
59
-
-
85021198194
-
A shared task on multimodal machine translation and crosslingual image description
-
L. Specia, S. Frank, K. Sima'an, and D. Elliott. A shared task on multimodal machine translation and crosslingual image description. In WMT, 2016.
-
(2016)
WMT
-
-
Specia, L.1
Frank, S.2
Sima'an, K.3
Elliott, D.4
-
60
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, 2014.
-
(2014)
NIPS
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
61
-
-
84969929993
-
Improving question classification by feature extraction and selection
-
N. Van-Tu and L. Anh-Cuong. Improving question classification by feature extraction and selection. Indian Journal of Science and Technology, 9(17), 2016.
-
(2016)
Indian Journal of Science and Technology
, vol.9
, Issue.17
-
-
Van-Tu, N.1
Anh-Cuong, L.2
-
62
-
-
1642319586
-
The TREC-8 question answering track evaluation
-
E. M. Voorhees and D. M. Tice. The TREC-8 question answering track evaluation. In TREC, Volume 1999, page 82, 1999.
-
(1999)
TREC
, vol.1999
, pp. 82
-
-
Voorhees, E.M.1
Tice, D.M.2
-
67
-
-
85071127938
-
Dynamic coattention networks for question answering
-
C. Xiong, V. Zhong, and R. Socher. Dynamic coattention networks for question answering. ICRL, 2017.
-
(2017)
ICRL
-
-
Xiong, C.1
Zhong, V.2
Socher, R.3
-
68
-
-
85047008855
-
End-to-end reading comprehension with dynamic answer chunk ranking
-
Y. Yu, W. Zhang, K. Hasan, M. Yu, B. Xiang, and B. Zhou. End-to-end reading comprehension with dynamic answer chunk ranking. ICLR, 2017.
-
(2017)
ICLR
-
-
Yu, Y.1
Zhang, W.2
Hasan, K.3
Yu, M.4
Xiang, B.5
Zhou, B.6
-
69
-
-
84994113241
-
Dependency sensitive convolutional neural networks for modeling sentences and documents
-
R. Zhang, H. Lee, and D. R. Radev. Dependency sensitive convolutional neural networks for modeling sentences and documents. In HLT-NAACL, 2016.
-
(2016)
HLT-NAACL
-
-
Zhang, R.1
Lee, H.2
Radev, D.R.3
-
70
-
-
85054981994
-
Text classification improved by integrating bidirectional LSTM with two-dimensional max pooling
-
P. Zhou, Z. Qi, S. Zheng, J. Xu, H. Bao, and B. Xu. Text classification improved by integrating bidirectional LSTM with two-dimensional max pooling. In COLING, 2016.
-
(2016)
COLING
-
-
Zhou, P.1
Qi, Z.2
Zheng, S.3
Xu, J.4
Bao, H.5
Xu, B.6
-
71
-
-
85093314939
-
Heterogeneous transfer learning for image classification
-
Y. Zhu, Y. Chen, Z. Lu, S. J. Pan, G.-R. Xue, Y. Yu, and Q. Yang. Heterogeneous transfer learning for image classification. In AAAI, 2011.
-
(2011)
AAAI
-
-
Zhu, Y.1
Chen, Y.2
Lu, Z.3
Pan, S.J.4
Xue, G.-R.5
Yu, Y.6
Yang, Q.7
|