메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 4303-4311

Hedged Deep Tracking

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; IMAGE PROCESSING; NEURAL NETWORKS; WOODEN FENCES;

EID: 84986246054     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.466     Document Type: Conference Paper
Times cited : (857)

References (41)
  • 1
    • 33845596140 scopus 로고    scopus 로고
    • Robust fragmentsbased tracking using the integral histogram
    • A. Adam, E. Rivlin, and I. Shimshoni. Robust fragmentsbased tracking using the integral histogram. In CVPR, 2006.
    • (2006) CVPR
    • Adam, A.1    Rivlin, E.2    Shimshoni, I.3
  • 2
    • 33947229323 scopus 로고    scopus 로고
    • Ensemble tracking
    • S. Avidan. Ensemble tracking. TPAMI, 29(2):261-271, 2007.
    • (2007) TPAMI , vol.29 , Issue.2 , pp. 261-271
    • Avidan, S.1
  • 4
    • 77955993278 scopus 로고    scopus 로고
    • Visual object tracking using adaptive correlation filters
    • D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. Visual object tracking using adaptive correlation filters. In CVPR, 2010.
    • (2010) CVPR
    • Bolme, D.S.1    Beveridge, J.R.2    Draper, B.A.3    Lui, Y.M.4
  • 5
    • 78249283851 scopus 로고    scopus 로고
    • A parameter-free hedging algorithm
    • K. Chaudhuri, Y. Freund, and D. Hsu. A parameter-free hedging algorithm. In NIPS, 2009.
    • (2009) NIPS
    • Chaudhuri, K.1    Freund, Y.2    Hsu, D.3
  • 6
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 7
    • 84919754301 scopus 로고    scopus 로고
    • Accurate scale estimation for robust visual tracking
    • M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg. Accurate scale estimation for robust visual tracking. In BMVC, 2014.
    • (2014) BMVC
    • Danelljan, M.1    Häger, G.2    Khan, F.S.3    Felsberg, M.4
  • 8
    • 80052910974 scopus 로고    scopus 로고
    • Context tracker: Exploring supporters and distracters in unconstrained environments
    • T. B. Dinh, N. Vo, and G. G. Medioni. Context tracker: Exploring supporters and distracters in unconstrained environments. In CVPR, 2011.
    • (2011) CVPR
    • Dinh, T.B.1    Vo, N.2    Medioni, G.G.3
  • 9
    • 77957774108 scopus 로고    scopus 로고
    • Human tracking using convolutional neural networks
    • J. Fan, W. Xu, Y. Wu, and Y. Gong. Human tracking using convolutional neural networks. TNN, 21(10):1610-1623, 2010.
    • (2010) TNN , vol.21 , Issue.10 , pp. 1610-1623
    • Fan, J.1    Xu, W.2    Wu, Y.3    Gong, Y.4
  • 10
    • 0344729476 scopus 로고
    • A desicion-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. E. Schapire. A desicion-theoretic generalization of on-line learning and an application to boosting. In Computational learning theory, 1995.
    • (1995) Computational Learning Theory
    • Freund, Y.1    Schapire, R.E.2
  • 11
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.B.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 12
    • 84898020313 scopus 로고    scopus 로고
    • Real-time tracking via on-line boosting
    • H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boosting. In BMVC, 2006.
    • (2006) BMVC
    • Grabner, H.1    Grabner, M.2    Bischof, H.3
  • 13
    • 70350531007 scopus 로고    scopus 로고
    • Semi-supervised on-line boosting for robust tracking
    • H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for robust tracking. In ECCV, 2008.
    • (2008) ECCV
    • Grabner, H.1    Leistner, C.2    Bischof, H.3
  • 14
    • 84856659290 scopus 로고    scopus 로고
    • Struck: Structured output tracking with kernels
    • S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured output tracking with kernels. In ICCV, 2011.
    • (2011) ICCV
    • Hare, S.1    Saffari, A.2    Torr, P.H.S.3
  • 15
    • 85009918748 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 16
    • 84875994858 scopus 로고    scopus 로고
    • Exploiting the circulant structure of tracking-by-detection with kernels
    • J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the circulant structure of tracking-by-detection with kernels. In ECCV, 2012.
    • (2012) ECCV
    • Henriques, J.F.1    Caseiro, R.2    Martins, P.3    Batista, J.4
  • 17
    • 84922907906 scopus 로고    scopus 로고
    • Highspeed tracking with kernelized correlation filters
    • J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Highspeed tracking with kernelized correlation filters. TPAMI, 37(3):583-596, 2015.
    • (2015) TPAMI , vol.37 , Issue.3 , pp. 583-596
    • Henriques, J.F.1    Caseiro, R.2    Martins, P.3    Batista, J.4
  • 18
    • 84969506912 scopus 로고    scopus 로고
    • Online tracking by learning discriminative saliency map with convolutional neural network
    • S. Hong, T. You, S. Kwak, and B. Han. Online tracking by learning discriminative saliency map with convolutional neural network. In ICML, 2015.
    • (2015) ICML
    • Hong, S.1    You, T.2    Kwak, S.3    Han, B.4
  • 20
    • 77956005443 scopus 로고    scopus 로고
    • P-N learning: Bootstrapping binary classifiers by structural constraints
    • Z. Kalal, J. Matas, and K. Mikolajczyk. P-N learning: Bootstrapping binary classifiers by structural constraints. In CVPR, 2010.
    • (2010) CVPR
    • Kalal, Z.1    Matas, J.2    Mikolajczyk, K.3
  • 21
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 22
    • 84863027027 scopus 로고    scopus 로고
    • Treat samples differently: Object tracking with semi-supervised online covboost
    • G. Li, L. Qin, Q. Huang, J. Pang, and S. Jiang. Treat samples differently: Object tracking with semi-supervised online covboost. In ICCV, 2011.
    • (2011) ICCV
    • Li, G.1    Qin, L.2    Huang, Q.3    Pang, J.4    Jiang, S.5
  • 23
    • 84885606175 scopus 로고    scopus 로고
    • A survey of appearance models in visual object tracking
    • X. Li,W. Hu, C. Shen, Z. Zhang, A. R. Dick, and A. van den Hengel. A survey of appearance models in visual object tracking. ACM TIST, 4(4):58, 2013.
    • (2013) ACM TIST , vol.4 , Issue.4 , pp. 58
    • Li, X.1    Hu, W.2    Shen, C.3    Zhang, Z.4    Dick, A.R.5    Hengel Den A.Van6
  • 24
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • D. G. Lowe. Object recognition from local scale-invariant features. In ICCV, 1999.
    • (1999) ICCV
    • Lowe, D.G.1
  • 25
    • 84973869904 scopus 로고    scopus 로고
    • Hierarchical convolutional features for visual tracking
    • C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical convolutional features for visual tracking. In ICCV, 2015.
    • (2015) ICCV
    • Ma, C.1    Huang, J.-B.2    Yang, X.3    Yang, M.-H.4
  • 26
    • 84978755117 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • abs/1409.1556
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
    • (2014) CoRR
    • Simonyan, K.1    Zisserman, A.2
  • 28
    • 78449247247 scopus 로고    scopus 로고
    • Improved object tracking algorithm based on new HSV color probability model
    • G. Tian, R. Hu, Z. Wang, and Y. Fu. Improved object tracking algorithm based on new HSV color probability model. In ISNN, 2009.
    • (2009) ISNN
    • Tian, G.1    Hu, R.2    Wang, Z.3    Fu, Y.4
  • 29
    • 84962815548 scopus 로고    scopus 로고
    • Matconvnet: Convolutional neural networks for MATLAB
    • A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural networks for MATLAB. In ACM Multimedia, 2015.
    • (2015) ACM Multimedia
    • Vedaldi, A.1    Lenc, K.2
  • 30
    • 84898957022 scopus 로고    scopus 로고
    • Learning a deep compact image representation for visual tracking
    • N. Wang and D.-Y. Yeung. Learning a deep compact image representation for visual tracking. In NIPS, 2013.
    • (2013) NIPS
    • Wang, N.1    Yeung, D.-Y.2
  • 31
    • 84919785601 scopus 로고    scopus 로고
    • Ensemble-based tracking: Aggregating crowdsourced structured time Series data
    • N.Wang and D.-Y. Yeung. Ensemble-based tracking: Aggregating crowdsourced structured time Series data. In ICML, 2014.
    • (2014) ICML
    • Wang, N.1    Yeung, D.-Y.2
  • 32
    • 84959236471 scopus 로고    scopus 로고
    • Jots: Joint online tracking and segmentation
    • L. Wen, D. Du, Z. Lei, S. Li, and M.-H. Yang. Jots: Joint online tracking and segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Wen, L.1    Du, D.2    Lei, Z.3    Li, S.4    Yang, M.-H.5
  • 33
    • 84887348427 scopus 로고    scopus 로고
    • Online object tracking: A benchmark
    • Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In CVPR, 2013.
    • (2013) CVPR
    • Wu, Y.1    Lim, J.2    Yang, M.-H.3
  • 34
    • 84939235624 scopus 로고    scopus 로고
    • Object tracking benchmark
    • Y. Wu, J. Lim, and M.-H. Yang. Object tracking benchmark. TPAMI, 37:1834-1848, 2015.
    • (2015) TPAMI , vol.37 , pp. 1834-1848
    • Wu, Y.1    Lim, J.2    Yang, M.-H.3
  • 35
    • 84957677391 scopus 로고    scopus 로고
    • Bounding multiple Gaussians uncertaninty with application to object tracking
    • B. Zhang, A. Perina, Z. Li, V. Murino, J. Liu, and R. Ji. Bounding multiple Gaussians uncertaninty with application to object tracking. IJCV, pages 1-16, 2016.
    • (2016) IJCV , pp. 1-16
    • Zhang, B.1    Perina, A.2    Li, Z.3    Murino, V.4    Liu, J.5    Ji, R.6
  • 36
    • 85009901660 scopus 로고    scopus 로고
    • MEEM: Robust tracking via multiple experts using entropy minimization
    • J. Zhang, S. Ma, and S. Sclaroff. MEEM: robust tracking via multiple experts using entropy minimization. In ECCV, 2014.
    • (2014) ECCV
    • Zhang, J.1    Ma, S.2    Sclaroff, S.3
  • 37
    • 85077961749 scopus 로고    scopus 로고
    • Online dictionary learning on symmetric positive definite manifolds with vision applications
    • S. Zhang, S. Kasiviswanathan, P. C. Yuen, and M. Harandi. Online dictionary learning on symmetric positive definite manifolds with vision applications. In AAAI, 2015.
    • (2015) AAAI
    • Zhang, S.1    Kasiviswanathan, S.2    Yuen, P.C.3    Harandi, M.4
  • 38
    • 84875236224 scopus 로고    scopus 로고
    • Sparse coding based visual tracking: Review and experimental comparison
    • S. Zhang, H. Yao, X. Sun, and X. Lu. Sparse coding based visual tracking: Review and experimental comparison. Pattern Recognition, 46:1772-1788, 2013.
    • (2013) Pattern Recognition , vol.46 , pp. 1772-1788
    • Zhang, S.1    Yao, H.2    Sun, X.3    Lu, X.4
  • 39
    • 84930653781 scopus 로고    scopus 로고
    • Robust visual tracking using structurally random projection and weighted least squares
    • S. Zhang, H. Zhou, F. Jiang, and X. Li. Robust visual tracking using structurally random projection and weighted least squares. IEEE Trans. Circuits Syst. Video Techn., 25:1749-1760, 2015.
    • (2015) IEEE Trans. Circuits Syst. Video Techn. , vol.25 , pp. 1749-1760
    • Zhang, S.1    Zhou, H.2    Jiang, F.3    Li, X.4
  • 40
    • 84866678444 scopus 로고    scopus 로고
    • Robust visual tracking via multi-task sparse learning
    • T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust visual tracking via multi-task sparse learning. In CVPR, 2012.
    • (2012) CVPR
    • Zhang, T.1    Ghanem, B.2    Liu, S.3    Ahuja, N.4
  • 41
    • 84866648566 scopus 로고    scopus 로고
    • Robust object tracking via sparsity-based collaborative model
    • W. Zhong, H. Lu, and M.-H. Yang. Robust object tracking via sparsity-based collaborative model. In CVPR, 2012.
    • (2012) CVPR
    • Zhong, W.1    Lu, H.2    Yang, M.-H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.