-
1
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
2
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
3
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
4
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
5
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet large scale visual recognition challenge. IJCV, 115(3): 211-252, 2015.
-
(2015)
IJCV
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
6
-
-
84937834115
-
Microsoft COCO: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Common objects in context. In ECCV, 2014.
-
(2014)
ECCV
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
7
-
-
85046872708
-
Places: A 10 million image database for scene recognition
-
B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. Places: A 10 million image database for scene recognition. TPAMI, 2017.
-
(2017)
TPAMI
-
-
Zhou, B.1
Lapedriza, A.2
Khosla, A.3
Oliva, A.4
Torralba, A.5
-
8
-
-
84911449311
-
Capturing long-tail distributions of object subcategories
-
X. Zhu, D. Anguelov, and D. Ramanan. Capturing long-tail distributions of object subcategories. In CVPR, 2014.
-
(2014)
CVPR
-
-
Zhu, X.1
Anguelov, D.2
Ramanan, D.3
-
9
-
-
84924598740
-
Do we need more training data?
-
X. Zhu, C. Vondrick, C. C. Fowlkes, and D. Ramanan. Do we need more training data? IJCV, 119(1): 76-92, 2016.
-
(2016)
IJCV
, vol.119
, Issue.1
, pp. 76-92
-
-
Zhu, X.1
Vondrick, C.2
Fowlkes, C.C.3
Ramanan, D.4
-
11
-
-
77951298115
-
The PASCAL visual object classes (VOC) challenge
-
M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The PASCAL visual object classes (VOC) challenge. IJCV, 88(2): 303-338, 2010.
-
(2010)
IJCV
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.3
Winn, J.4
Zisserman, A.5
-
12
-
-
85011596790
-
Visual genome: Connecting language and vision using crowdsourced dense image annotations
-
R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalanditis, L.-J. Li, D. A. Shamma, M. Bernstein, and L. Fei-Fei. Visual genome: Connecting language and vision using crowdsourced dense image annotations. IJCV, 123(1): 32-73, 2017.
-
(2017)
IJCV
, vol.123
, Issue.1
, pp. 32-73
-
-
Krishna, R.1
Zhu, Y.2
Groth, O.3
Johnson, J.4
Hata, K.5
Kravitz, J.6
Chen, S.7
Kalanditis, Y.8
Li, L.-J.9
Shamma, D.A.10
Bernstein, M.11
Fei-Fei, L.12
-
13
-
-
84986302036
-
Factors in finetuning deep model for object detection with long-tail distribution
-
W. Ouyang, X. Wang, C. Zhang, and X. Yang. Factors in finetuning deep model for object detection with long-tail distribution. In CVPR, 2016.
-
(2016)
CVPR
-
-
Ouyang, W.1
Wang, X.2
Zhang, C.3
Yang, X.4
-
14
-
-
84976407509
-
SUN database: Exploring a large collection of scene categories
-
J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva. SUN database: Exploring a large collection of scene categories. IJCV, 119(1): 3-22, 2016.
-
(2016)
IJCV
, vol.119
, Issue.1
, pp. 3-22
-
-
Xiao, J.1
Ehinger, K.A.2
Hays, J.3
Torralba, A.4
Oliva, A.5
-
15
-
-
85047017886
-
Sharing representations for long tail computer vision problems
-
S. Bengio. Sharing representations for long tail computer vision problems. In ICMI, 2015.
-
(2015)
ICMI
-
-
Bengio, S.1
-
16
-
-
85044520154
-
Relay backpropagation for effective learning of deep convolutional neural networks
-
L. Shen, Z. Lin, and Q. Huang. Relay backpropagation for effective learning of deep convolutional neural networks. In ECCV, 2016.
-
(2016)
ECCV
-
-
Shen, L.1
Lin, Z.2
Huang, Q.3
-
17
-
-
85046992562
-
Towards good practices for recognition & detection
-
Q. Zhong, C. Li, Y. Zhang, H. Sun, S. Yang, D. Xie, and S. Pu. Towards good practices for recognition & detection. In CVPR workshops, 2016.
-
(2016)
CVPR Workshops
-
-
Zhong, Q.1
Li, C.2
Zhang, Y.3
Sun, H.4
Yang, S.5
Xie, D.6
Pu, S.7
-
18
-
-
77956031473
-
A survey on transfer learning
-
S. J. Pan and Q. Yang. A survey on transfer learning. TKDE, 22(10): 1345-1359, 2010.
-
(2010)
TKDE
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Pan, S.J.1
Yang, Q.2
-
19
-
-
84937508363
-
How transferable are features in deep neural networks?
-
J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks? In NIPS, 2014.
-
(2014)
NIPS
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
-
20
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
21
-
-
85018929847
-
Learning to learn: Model regression networks for easy small sample learning
-
Y.-X. Wang and M. Hebert. Learning to learn: Model regression networks for easy small sample learning. In ECCV, 2016.
-
(2016)
ECCV
-
-
Wang, Y.-X.1
Hebert, M.2
-
22
-
-
85019172761
-
Learning to learn by gradient descent by gradient descent
-
M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, and N. de Freitas. Learning to learn by gradient descent by gradient descent. In NIPS, 2016.
-
(2016)
NIPS
-
-
Andrychowicz, M.1
Denil, M.2
Gomez, S.3
Hoffman, M.W.4
Pfau, D.5
Schaul, T.6
De Freitas, N.7
-
23
-
-
85018930461
-
Learning from small sample sets by combining unsupervised meta-training with CNNs
-
Y.-X. Wang and M. Hebert. Learning from small sample sets by combining unsupervised meta-training with CNNs. In NIPS, 2016.
-
(2016)
NIPS
-
-
Wang, Y.-X.1
Hebert, M.2
-
24
-
-
85088230669
-
Learning to optimize
-
K. Li and J. Malik. Learning to optimize. In ICLR, 2017.
-
(2017)
ICLR
-
-
Li, K.1
Malik, J.2
-
25
-
-
85041901997
-
Optimization as a model for few-shot learning
-
S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017.
-
(2017)
ICLR
-
-
Ravi, S.1
Larochelle, H.2
-
26
-
-
85047000737
-
Introspection: Accelerating neural network training by learning weight evolution
-
A. Sinha, M. Sarkar, A. Mukherjee, and B. Krishnamurthy. Introspection: Accelerating neural network training by learning weight evolution. In ICLR, 2017.
-
(2017)
ICLR
-
-
Sinha, A.1
Sarkar, M.2
Mukherjee, A.3
Krishnamurthy, B.4
-
27
-
-
68549133155
-
Learning from imbalanced data
-
H. He and E. A. Garcia. Learning from imbalanced data. TKDE, 21(9): 1263-1284, 2009.
-
(2009)
TKDE
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
28
-
-
84986295253
-
Learning deep representation for imbalanced classification
-
C. Huang, Y. Li, C. C. Loy, and X. Tang. Learning deep representation for imbalanced classification. In CVPR, 2016.
-
(2016)
CVPR
-
-
Huang, C.1
Li, Y.2
Loy, C.C.3
Tang, X.4
-
30
-
-
0031186687
-
Shifting inductive bias with success-story algorithm, adaptive levin search, and incremental self-improvement
-
J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story algorithm, adaptive levin search, and incremental self-improvement. Machine Learning, 28(1): 105-130, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 105-130
-
-
Schmidhuber, J.1
Zhao, J.2
Wiering, M.3
-
31
-
-
0031189914
-
Multitask learning
-
R. Caruana. Multitask learning. Machine Learning, 28(1): 41-75, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
33
-
-
0346377064
-
Learning to control fast-weight memories: An alternative to dynamic recurrent networks
-
J. Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent networks. Neural Computation, 4(1): 131-139, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.1
, pp. 131-139
-
-
Schmidhuber, J.1
-
35
-
-
85018918773
-
Learning feed-forward one-shot learners
-
L. Bertinetto, J. F. Henriques, J. Valmadre, P. Torr, and A. Vedaldi. Learning feed-forward one-shot learners. In NIPS, 2016.
-
(2016)
NIPS
-
-
Bertinetto, L.1
Henriques, J.F.2
Valmadre, J.3
Torr, P.4
Vedaldi, A.5
-
37
-
-
85041899497
-
Model-agnostic meta-learning for fast adaptation of deep networks
-
C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In ICML, 2017.
-
(2017)
ICML
-
-
Finn, C.1
Abbeel, P.2
Levine, S.3
-
38
-
-
85047006619
-
Learning multiple visual domains with residual adapters
-
S.-A. Rebuffi, H. Bilen, and A. Vedaldi. Learning multiple visual domains with residual adapters. In NIPS, 2017.
-
(2017)
NIPS
-
-
Rebuffi, S.-A.1
Bilen, H.2
Vedaldi, A.3
-
41
-
-
84973882857
-
Predicting deep zero-shot convolutional neural networks using textual descriptions
-
J. Ba, K. Swersky, S. Fidler, and R. Salakhutdinov. Predicting deep zero-shot convolutional neural networks using textual descriptions. In ICCV, 2015.
-
(2015)
ICCV
-
-
Ba, J.1
Swersky, K.2
Fidler, S.3
Salakhutdinov, R.4
-
42
-
-
84986261711
-
Image question answering using convolutional neural network with dynamic parameter prediction
-
H. Noh, P. H. Seo, and B. Han. Image question answering using convolutional neural network with dynamic parameter prediction. In CVPR, 2016.
-
(2016)
CVPR
-
-
Noh, H.1
Seo, P.H.2
Han, B.3
-
43
-
-
33144466753
-
One-shot learning of object categories
-
L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. TPAMI, 28(4): 594-611, 2006.
-
(2006)
TPAMI
, vol.28
, Issue.4
, pp. 594-611
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
44
-
-
84959250182
-
Model recommendation: Generating object detectors from few samples
-
Y.-X. Wang and M. Hebert. Model recommendation: Generating object detectors from few samples. In CVPR, 2015.
-
(2015)
CVPR
-
-
Wang, Y.-X.1
Hebert, M.2
-
46
-
-
84949683101
-
Human-level concept learning through probabilistic program induction
-
B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through probabilistic program induction. Science, 350(6266): 1332-1338, 2015.
-
(2015)
Science
, vol.350
, Issue.6266
, pp. 1332-1338
-
-
Lake, B.M.1
Salakhutdinov, R.2
Tenenbaum, J.B.3
-
47
-
-
84998717754
-
One-shot learning with memory-augmented neural networks
-
A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. One-shot learning with memory-augmented neural networks. In ICML, 2016.
-
(2016)
ICML
-
-
Santoro, A.1
Bartunov, S.2
Botvinick, M.3
Wierstra, D.4
Lillicrap, T.5
-
48
-
-
85007242857
-
Learning by transferring from unsupervised universal sources
-
Y.-X. Wang and M. Hebert. Learning by transferring from unsupervised universal sources. In AAAI, 2016.
-
(2016)
AAAI
-
-
Wang, Y.-X.1
Hebert, M.2
-
49
-
-
84994641616
-
Learning without forgetting
-
Z. Li and D. Hoiem. Learning without forgetting. In ECCV, 2016.
-
(2016)
ECCV
-
-
Li, Z.1
Hoiem, D.2
-
50
-
-
85041907438
-
Low-shot visual recognition by shrinking and hallucinating features
-
B. Hariharan and R. Girshick. Low-shot visual recognition by shrinking and hallucinating features. In ICCV, 2017.
-
(2017)
ICCV
-
-
Hariharan, B.1
Girshick, R.2
-
51
-
-
0005594495
-
Signature verification using a "siamese" time delay neural network
-
J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore, E. Säckinger, and R. Shah. Signature verification using a "siamese" time delay neural network. International Journal of Pattern Recognition and Artificial Intelligence, 7(4): 669-688, 1993.
-
(1993)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.7
, Issue.4
, pp. 669-688
-
-
Bromley, J.1
Bentz, J.W.2
Bottou, L.3
Guyon, I.4
LeCun, Y.5
Moore, C.6
Säckinger, E.7
Shah, R.8
-
52
-
-
85018863845
-
Matching networks for one shot learning
-
O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks for one shot learning. In NIPS, 2016.
-
(2016)
NIPS
-
-
Vinyals, O.1
Blundell, C.2
Lillicrap, T.3
Kavukcuoglu, K.4
Wierstra, D.5
-
53
-
-
85046993347
-
Prototypical networks for few-shot learning
-
J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. In NIPS, 2017.
-
(2017)
NIPS
-
-
Snell, J.1
Swersky, K.2
Zemel, R.S.3
-
54
-
-
85040681540
-
Recent advances in zero-shot recognition: Toward data-efficient understanding of visual content
-
Y. Fu, T. Xiang, Y.-G. Jiang, X. Xue, L. Sigal, and S. Gong. Recent advances in zero-shot recognition: Toward data-efficient understanding of visual content. IEEE Signal Processing Magazine, 35(1): 112-125, 2018.
-
(2018)
IEEE Signal Processing Magazine
, vol.35
, Issue.1
, pp. 112-125
-
-
Fu, Y.1
Xiang, T.2
Jiang, Y.-G.3
Xue, X.4
Sigal, L.5
Gong, S.6
-
55
-
-
85032354846
-
A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs
-
D. George, W. Lehrach, K. Kansky, M. Lázaro-Gredilla, C. Laan, B. Marthi, X. Lou, Z. Meng, Y. Liu, H. Wang, A. Lavin, and D. S. Phoenix. A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs. Science, 2017.
-
(2017)
Science
-
-
George, D.1
Lehrach, W.2
Kansky, K.3
Lázaro-Gredilla, M.4
Laan, C.5
Marthi, B.6
Lou, X.7
Meng, Z.8
Liu, Y.9
Wang, H.10
Lavin, A.11
Phoenix, D.S.12
-
56
-
-
85046992622
-
Few-shot learning through an information retrieval lens
-
E. Triantafillou, R. Zemel, and R. Urtasun. Few-shot learning through an information retrieval lens. In NIPS, 2017.
-
(2017)
NIPS
-
-
Triantafillou, E.1
Zemel, R.2
Urtasun, R.3
-
57
-
-
84990056336
-
Identity mappings in deep residual networks
-
K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In ECCV, 2016.
-
(2016)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
58
-
-
85041923826
-
Revisiting unreasonable effectiveness of data in deep learning era
-
C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable effectiveness of data in deep learning era. In ICCV, 2017.
-
(2017)
ICCV
-
-
Sun, C.1
Shrivastava, A.2
Singh, S.3
Gupta, A.4
-
59
-
-
85009867858
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In ACM MM, 2014.
-
(2014)
ACM MM
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
60
-
-
84919881041
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In ICML, 2014.
-
(2014)
ICML
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
61
-
-
84973389608
-
Analyzing the performance of multilayer neural networks for object recognition
-
P. Agrawal, R. Girshick, and J. Malik. Analyzing the performance of multilayer neural networks for object recognition. In ECCV, 2014.
-
(2014)
ECCV
-
-
Agrawal, P.1
Girshick, R.2
Malik, J.3
-
63
-
-
85044381962
-
Growing a brain: Fine-tuning by increasing model capacity
-
Y.-X. Wang, D. Ramanan, and M. Hebert. Growing a brain: Fine-tuning by increasing model capacity. In CVPR, 2017.
-
(2017)
CVPR
-
-
Wang, Y.-X.1
Ramanan, D.2
Hebert, M.3
-
64
-
-
57249084011
-
Visualizing data using t-SNE
-
L. van der Maaten and G. Hinton. Visualizing data using t-SNE. JMLR, 9(Nov): 2579-2605, 2008.
-
(2008)
JMLR
, vol.9
, Issue.NOV
, pp. 2579-2605
-
-
Van Der Maaten, L.1
Hinton, G.2
|