메뉴 건너뛰기




Volumn , Issue , 2017, Pages 1976-1984

Alternating back-propagation for generator network

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BACKPROPAGATION ALGORITHMS; LEARNING ALGORITHMS; NEURAL NETWORKS;

EID: 85030452031     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (156)

References (36)
  • 1
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • Candès, E. J.; Romberg, J.; and Tao, T. 2006. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on information theory 52 (2): 489-509.
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.2 , pp. 489-509
    • Candès, E.J.1    Romberg, J.2    Tao, T.3
  • 3
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • Denton, E. L.; Chintala, S.; Fergus, R.; et al. 2015. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS, 1486-1494.
    • (2015) NIPS , pp. 1486-1494
    • Denton, E.L.1    Chintala, S.2    Fergus, R.3
  • 6
    • 84959184995 scopus 로고    scopus 로고
    • Learning to generate chairs with convolutional neural networks
    • Dosovitskiy, E.; Springenberg, J. T.; and Brox, T. 2015. Learning to generate chairs with convolutional neural networks. In CVPR.
    • (2015) CVPR
    • Dosovitskiy, E.1    Springenberg, J.T.2    Brox, T.3
  • 7
  • 10
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 11
    • 67349093319 scopus 로고    scopus 로고
    • Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
    • Kim, H., and Park, H. 2008. Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM Journal on Matrix Analysis and Applications 30 (2): 713-730.
    • (2008) SIAM Journal on Matrix Analysis and Applications , vol.30 , Issue.2 , pp. 713-730
    • Kim, H.1    Park, H.2
  • 12
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • Kingma, D. P., and Welling, M. 2014. Auto-encoding variational bayes. In ICLR.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 13
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix factorization techniques for recommender systems. Computer 42 (8): 30-37.
    • (2009) Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 14
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet classification with deep convolutional neural networks. In NIPS, 1097-1105.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 15
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86 (11): 2278-2324.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 16
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for nonnegative matrix factorization
    • Lee, D. D., and Seung, H. S. 2001. Algorithms for nonnegative matrix factorization. In NIPS, 556-562.
    • (2001) NIPS , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 17
    • 84973917446 scopus 로고    scopus 로고
    • Deep learning face attributes in the wild
    • Liu, Z.; Luo, P.;Wang, X.; and Tang, X. 2015. Deep learning face attributes in the wild. In ICCV, 3730-3738.
    • (2015) ICCV , pp. 3730-3738
    • Liu, Z.1    Luo, P.2    Wang, X.3    Tang, X.4
  • 18
    • 0001508169 scopus 로고    scopus 로고
    • Parameter expansion to accelerate em: The px-em algorithm
    • Liu, C.; Rubin, D. B.; and Wu, Y. N. 1998. Parameter expansion to accelerate em: The px-em algorithm. Biometrika 85 (4): 755-770.
    • (1998) Biometrika , vol.85 , Issue.4 , pp. 755-770
    • Liu, C.1    Rubin, D.B.2    Wu, Y.N.3
  • 19
    • 85007240797 scopus 로고    scopus 로고
    • Learning FRAME models using CNN filters
    • Lu, Y.; Zhu, S.-C.; and Wu, Y. N. 2016. Learning FRAME models using CNN filters. In AAAI.
    • (2016) AAAI
    • Lu, Y.1    Zhu, S.-C.2    Wu, Y.N.3
  • 20
    • 84893676344 scopus 로고    scopus 로고
    • Rectifier nonlinearities improve neural network acoustic models
    • Maas, A. L.; Hannun, A. Y.; and Ng, A. Y. 2013. Rectifier nonlinearities improve neural network acoustic models. In ICML.
    • (2013) ICML
    • Maas, A.L.1    Hannun, A.Y.2    Ng, A.Y.3
  • 21
    • 80052406394 scopus 로고    scopus 로고
    • Sound texture perception via statistics of the auditory periphery: Evidence from sound synthesis
    • McDermott, J. H., and Simoncelli, E. P. 2011. Sound texture perception via statistics of the auditory periphery: evidence from sound synthesis. Neuron 71 (5): 926-940.
    • (2011) Neuron , vol.71 , Issue.5 , pp. 926-940
    • McDermott, J.H.1    Simoncelli, E.P.2
  • 22
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • Mnih, A., and Gregor, K. 2014. Neural variational inference and learning in belief networks. In ICML.
    • (2014) ICML
    • Mnih, A.1    Gregor, K.2
  • 24
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1
    • Olshausen, B. A., and Field, D. J. 1997. Sparse coding with an overcomplete basis set: A strategy employed by v1 Vision Research 37 (23): 3311-3325.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 26
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • Radford, A.; Metz, L.; and Chintala, S. 2016. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR.
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 27
    • 84919908080 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • Rezende, D. J.; Mohamed, S.; andWierstra, D. 2014. Stochastic backpropagation and approximate inference in deep generative models. In NIPS, 1278-1286.
    • (2014) NIPS , pp. 1278-1286
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 28
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S. T., and Saul, L. K. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 290 (5500): 2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 29
    • 34250232348 scopus 로고
    • Em algorithms for ml factor analysis
    • Rubin, D. B., and Thayer, D. T. 1982. Em algorithms for ml factor analysis. Psychometrika 47 (1): 69-76.
    • (1982) Psychometrika , vol.47 , Issue.1 , pp. 69-76
    • Rubin, D.B.1    Thayer, D.T.2
  • 31
    • 84962815548 scopus 로고    scopus 로고
    • Matconvnet-convolutional neural networks for matlab
    • Vedaldi, A., and Lenc, K. 2015. Matconvnet-convolutional neural networks for matlab. In Int. Conf. on Multimedia.
    • (2015) Int. Conf. on Multimedia
    • Vedaldi, A.1    Lenc, K.2
  • 32
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • Vincent, P.; Larochelle, H.; Bengio, Y.; and Manzagol, P.-A. 2008. Extracting and composing robust features with denoising autoencoders. In ICML, 1096-1103.
    • (2008) ICML , pp. 1096-1103
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 33
    • 0344551911 scopus 로고    scopus 로고
    • Modeling textured motion: Particle, wave and sketch
    • Wang, Y., and Zhu, S.-C. 2003. Modeling textured motion: Particle, wave and sketch. In ICCV, 213-220.
    • (2003) ICCV , pp. 213-220
    • Wang, Y.1    Zhu, S.-C.2
  • 34
    • 84998996685 scopus 로고    scopus 로고
    • A theory of generative convnet
    • Xie, J.; Lu, Y.; Zhu, S.-C.; and Wu, Y. N. 2016. A theory of generative convnet. In ICML.
    • (2016) ICML
    • Xie, J.1    Lu, Y.2    Zhu, S.-C.3    Wu, Y.N.4
  • 36
    • 33644756784 scopus 로고    scopus 로고
    • On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates
    • Younes, L. 1999. On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stochastics: An International Journal of Probability and Stochastic Processes 65 (3-4): 177-228.
    • (1999) Stochastics: An International Journal of Probability and Stochastic Processes , vol.65 , Issue.3-4 , pp. 177-228
    • Younes, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.