-
1
-
-
31744440684
-
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
-
Candès, E. J.; Romberg, J.; and Tao, T. 2006. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on information theory 52 (2): 489-509.
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, Issue.2
, pp. 489-509
-
-
Candès, E.J.1
Romberg, J.2
Tao, T.3
-
3
-
-
84965143571
-
Deep generative image models using a laplacian pyramid of adversarial networks
-
Denton, E. L.; Chintala, S.; Fergus, R.; et al. 2015. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS, 1486-1494.
-
(2015)
NIPS
, pp. 1486-1494
-
-
Denton, E.L.1
Chintala, S.2
Fergus, R.3
-
5
-
-
0037312530
-
Dynamic textures
-
Doretto, G.; Chiuso, A.; Wu, Y.; and Soatto, S. 2003. Dynamic textures. IJCV 51 (2): 91-109.
-
(2003)
IJCV
, vol.51
, Issue.2
, pp. 91-109
-
-
Doretto, G.1
Chiuso, A.2
Wu, Y.3
Soatto, S.4
-
6
-
-
84959184995
-
Learning to generate chairs with convolutional neural networks
-
Dosovitskiy, E.; Springenberg, J. T.; and Brox, T. 2015. Learning to generate chairs with convolutional neural networks. In CVPR.
-
(2015)
CVPR
-
-
Dosovitskiy, E.1
Springenberg, J.T.2
Brox, T.3
-
8
-
-
84937849144
-
Generative adversarial nets
-
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Generative adversarial nets. In NIPS, 2672-2680.
-
(2014)
NIPS
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
10
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML.
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
11
-
-
67349093319
-
Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
-
Kim, H., and Park, H. 2008. Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM Journal on Matrix Analysis and Applications 30 (2): 713-730.
-
(2008)
SIAM Journal on Matrix Analysis and Applications
, vol.30
, Issue.2
, pp. 713-730
-
-
Kim, H.1
Park, H.2
-
12
-
-
85083952489
-
Auto-encoding variational bayes
-
Kingma, D. P., and Welling, M. 2014. Auto-encoding variational bayes. In ICLR.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
13
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix factorization techniques for recommender systems. Computer 42 (8): 30-37.
-
(2009)
Computer
, vol.42
, Issue.8
, pp. 30-37
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
14
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet classification with deep convolutional neural networks. In NIPS, 1097-1105.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
15
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86 (11): 2278-2324.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
16
-
-
84898964201
-
Algorithms for nonnegative matrix factorization
-
Lee, D. D., and Seung, H. S. 2001. Algorithms for nonnegative matrix factorization. In NIPS, 556-562.
-
(2001)
NIPS
, pp. 556-562
-
-
Lee, D.D.1
Seung, H.S.2
-
17
-
-
84973917446
-
Deep learning face attributes in the wild
-
Liu, Z.; Luo, P.;Wang, X.; and Tang, X. 2015. Deep learning face attributes in the wild. In ICCV, 3730-3738.
-
(2015)
ICCV
, pp. 3730-3738
-
-
Liu, Z.1
Luo, P.2
Wang, X.3
Tang, X.4
-
18
-
-
0001508169
-
Parameter expansion to accelerate em: The px-em algorithm
-
Liu, C.; Rubin, D. B.; and Wu, Y. N. 1998. Parameter expansion to accelerate em: The px-em algorithm. Biometrika 85 (4): 755-770.
-
(1998)
Biometrika
, vol.85
, Issue.4
, pp. 755-770
-
-
Liu, C.1
Rubin, D.B.2
Wu, Y.N.3
-
19
-
-
85007240797
-
Learning FRAME models using CNN filters
-
Lu, Y.; Zhu, S.-C.; and Wu, Y. N. 2016. Learning FRAME models using CNN filters. In AAAI.
-
(2016)
AAAI
-
-
Lu, Y.1
Zhu, S.-C.2
Wu, Y.N.3
-
20
-
-
84893676344
-
Rectifier nonlinearities improve neural network acoustic models
-
Maas, A. L.; Hannun, A. Y.; and Ng, A. Y. 2013. Rectifier nonlinearities improve neural network acoustic models. In ICML.
-
(2013)
ICML
-
-
Maas, A.L.1
Hannun, A.Y.2
Ng, A.Y.3
-
21
-
-
80052406394
-
Sound texture perception via statistics of the auditory periphery: Evidence from sound synthesis
-
McDermott, J. H., and Simoncelli, E. P. 2011. Sound texture perception via statistics of the auditory periphery: evidence from sound synthesis. Neuron 71 (5): 926-940.
-
(2011)
Neuron
, vol.71
, Issue.5
, pp. 926-940
-
-
McDermott, J.H.1
Simoncelli, E.P.2
-
22
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
Mnih, A., and Gregor, K. 2014. Neural variational inference and learning in belief networks. In ICML.
-
(2014)
ICML
-
-
Mnih, A.1
Gregor, K.2
-
24
-
-
0030779611
-
Sparse coding with an overcomplete basis set: A strategy employed by v1
-
Olshausen, B. A., and Field, D. J. 1997. Sparse coding with an overcomplete basis set: A strategy employed by v1 Vision Research 37 (23): 3311-3325.
-
(1997)
Vision Research
, vol.37
, Issue.23
, pp. 3311-3325
-
-
Olshausen, B.A.1
Field, D.J.2
-
26
-
-
85083950271
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
Radford, A.; Metz, L.; and Chintala, S. 2016. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR.
-
(2016)
ICLR
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
27
-
-
84919908080
-
Stochastic backpropagation and approximate inference in deep generative models
-
Rezende, D. J.; Mohamed, S.; andWierstra, D. 2014. Stochastic backpropagation and approximate inference in deep generative models. In NIPS, 1278-1286.
-
(2014)
NIPS
, pp. 1278-1286
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
28
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Roweis, S. T., and Saul, L. K. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 290 (5500): 2323-2326.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
29
-
-
34250232348
-
Em algorithms for ml factor analysis
-
Rubin, D. B., and Thayer, D. T. 1982. Em algorithms for ml factor analysis. Psychometrika 47 (1): 69-76.
-
(1982)
Psychometrika
, vol.47
, Issue.1
, pp. 69-76
-
-
Rubin, D.B.1
Thayer, D.T.2
-
31
-
-
84962815548
-
Matconvnet-convolutional neural networks for matlab
-
Vedaldi, A., and Lenc, K. 2015. Matconvnet-convolutional neural networks for matlab. In Int. Conf. on Multimedia.
-
(2015)
Int. Conf. on Multimedia
-
-
Vedaldi, A.1
Lenc, K.2
-
32
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
Vincent, P.; Larochelle, H.; Bengio, Y.; and Manzagol, P.-A. 2008. Extracting and composing robust features with denoising autoencoders. In ICML, 1096-1103.
-
(2008)
ICML
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
33
-
-
0344551911
-
Modeling textured motion: Particle, wave and sketch
-
Wang, Y., and Zhu, S.-C. 2003. Modeling textured motion: Particle, wave and sketch. In ICCV, 213-220.
-
(2003)
ICCV
, pp. 213-220
-
-
Wang, Y.1
Zhu, S.-C.2
-
36
-
-
33644756784
-
On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates
-
Younes, L. 1999. On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stochastics: An International Journal of Probability and Stochastic Processes 65 (3-4): 177-228.
-
(1999)
Stochastics: An International Journal of Probability and Stochastic Processes
, vol.65
, Issue.3-4
, pp. 177-228
-
-
Younes, L.1
|