메뉴 건너뛰기




Volumn , Issue , 2011, Pages 163-174

Inference from simulations and monitoring convergence

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85059435623     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (218)

References (20)
  • 7
    • 36149016710 scopus 로고
    • Calculation of order parameters in a binary alloy by the Monte Carlo method
    • Fosdick, L. D. 1959. Calculation of order parameters in a binary alloy by the Monte Carlo method. Physical Review, 116:565-573
    • (1959) Physical Review , vol.116 , pp. 565-573
    • Fosdick, L.D.1
  • 8
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • Gelman, A. and Rubin, D. B. 1992. Inference from iterative simulation using multiple sequences (with discussion). Statistical Science, 7:457-511
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 11
    • 0032382838 scopus 로고    scopus 로고
    • Markov chain Monte Carlo in practice: A roundtable discussion
    • Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. 1998. Markov chain Monte Carlo in practice: A roundtable discussion. American Statistician, 52:93-100
    • (1998) American Statistician , vol.52 , pp. 93-100
    • Kass, R.E.1    Carlin, B.P.2    Gelman, A.3    Neal, R.4
  • 12
    • 0002129118 scopus 로고    scopus 로고
    • Markov-normal analysis of iterative simulations before their convergence
    • Liu, C. and Rubin, D. B. 1996. Markov-normal analysis of iterative simulations before their convergence. Journal of Econometrics, 75:69-78
    • (1996) Journal of Econometrics , vol.75 , pp. 69-78
    • Liu, C.1    Rubin, D.B.2
  • 13
    • 0036660835 scopus 로고    scopus 로고
    • Model-based analysis to improve the performance of iterative simulations
    • Liu, C. and Rubin, D. B. 2002. Model-based analysis to improve the performance of iterative simulations. Statistica Sinica, 12:751-767
    • (2002) Statistica Sinica , vol.12 , pp. 751-767
    • Liu, C.1    Rubin, D.B.2
  • 14
    • 69449104379 scopus 로고    scopus 로고
    • Visualizations for assessing convergence and mixing of Markov chain Monte Carlo simulations
    • Peltonen, J., Venna, J., and Kaski, S. 2009. Visualizations for assessing convergence and mixing of Markov chain Monte Carlo simulations. Computational Statistics and Data Analysis, 53:4453-4470
    • (2009) Computational Statistics and Data Analysis , vol.53 , pp. 4453-4470
    • Peltonen, J.1    Venna, J.2    Kaski, S.3
  • 16
    • 0000759236 scopus 로고
    • How many iterations in the Gibbs sampler?
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, (eds) Oxford University Press, Oxford
    • Raftery, A. E. and Lewis, S. M. 1992. How many iterations in the Gibbs sampler? In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (eds), Bayesian Statistics 4: Proceedings of the Fourth Valencia International Meeting, pp. 765-776. Oxford University Press, Oxford
    • (1992) Bayesian Statistics 4: Proceedings of the Fourth Valencia International Meeting , pp. 765-776
    • Raftery, A.E.1    Lewis, S.M.2
  • 20
    • 9444243908 scopus 로고    scopus 로고
    • Visualizations for assessing convergence and mixing of MCMC
    • N. Lavraè, D. Gamberger, H. Blockeel, and L. Todorovski (eds). Springer, Berlin. Lecture Notes in Artificial Intelligence
    • Venna, J., Kaski, S., and Peltonen, J. 2003. Visualizations for assessing convergence and mixing of MCMC. In N. Lavraè, D. Gamberger, H. Blockeel, and L. Todorovski (eds), Machine Learning: ECML 2003, Lecture Notes in Artificial Intelligence, Vol. 2837. Springer, Berlin
    • (2003) Machine Learning: ECML 2003 , vol.2837
    • Venna, J.1    Kaski, S.2    Peltonen, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.