-
1
-
-
0037403111
-
Mirror descent and nonlinear projected subgradient methods for convex optimization
-
Beck, A. and Teboulle, M. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31:167-175, 2003.
-
(2003)
Operations Research Letters
, vol.31
, pp. 167-175
-
-
Beck, A.1
Teboulle, M.2
-
2
-
-
0141607824
-
Latent dirichlet allocation
-
Blei, D. M., Ng, A. Y., and Jordan, M. I. Latent Dirichlet Allocation. Journal of Machine Learning Research, 3: 993-1022, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 993-1022
-
-
Blei, D.M.1
Ng, A.Y.2
Jordan, M.I.3
-
4
-
-
84899013244
-
Streaming variational bayes
-
Broderick, T., Boyd, N., Wibisono, A., Wilson, A. C., and Jordan, M. I. Streaming Variational Bayes. In Advances in Neural Information Processing Systems 26, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, vol.26
-
-
Broderick, T.1
Boyd, N.2
Wibisono, A.3
Wilson, A.C.4
Jordan, M.I.5
-
5
-
-
84919895840
-
-
arXiv.org, abs/1311.1704
-
Gopalan, P., Hofman, J. M., and Blei, D. M. Scalable Recommendation with Poisson Factorization. arXiv.org, abs/1311.1704, 2013.
-
(2013)
Scalable Recommendation with Poisson Factorization
-
-
Gopalan, P.1
Hofman, J.M.2
Blei, D.M.3
-
6
-
-
84937961755
-
Content-based recommendations with poisson factorization
-
Gopalan, P., Charlin, L., and Blei, D. M. Content-based recommendations with Poisson factorization. In Advances in Neural Information Processing Systems 27, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, vol.27
-
-
Gopalan, P.1
Charlin, L.2
Blei, D.M.3
-
8
-
-
85162005069
-
Online learning for latent dirichlet allocation
-
Hoffman, M. D., Blei, D. M., and Bach, F. R. Online Learning for Latent Dirichlet Allocation. In Advances in Neural Information Processing Systems 23, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
-
-
Hoffman, M.D.1
Blei, D.M.2
Bach, F.R.3
-
9
-
-
84878919168
-
Stochastic variational inference
-
Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. Stochastic Variational Inference. Journal of Machine Learning Research, 14:1303-1347, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
17
-
-
84969967644
-
The discrete infinite logistic normal distribution
-
Paisley, J., Wang, C., and Blei, D. M. The discrete infinite logistic normal distribution. Bayesian Analysis, 1 (2):235-272, 2012.
-
(2012)
Bayesian Analysis
, vol.1
, Issue.2
, pp. 235-272
-
-
Paisley, J.1
Wang, C.2
Blei, D.M.3
-
18
-
-
84937871648
-
-
arXiv.org, abs/1405.4604
-
Pascanu, R., Dauphin, Y. N., Ganguli, S., and Bengio, Y. On the saddle point problem for non-convex optimization. arXiv.org, abs/1405.4604, 2014.
-
(2014)
On the Saddle Point Problem for Non-convex Optimization
-
-
Pascanu, R.1
Dauphin, Y.N.2
Ganguli, S.3
Bengio, Y.4
-
19
-
-
84897505299
-
An adaptive learning rate for stochastic variational inference
-
Ranganath, R., Wang, C., Blei, D. M., and Xing, E. P. An Adaptive Learning Rate for Stochastic Variational Inference. In Proceedings of the 30th International Conference on Machine Learning, 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning
-
-
Ranganath, R.1
Wang, C.2
Blei, D.M.3
Xing, E.P.4
-
20
-
-
84959389596
-
Black box variational inference
-
Ranganath, R., Gerrish, S., and Blei, D. M. Black box variational inference. In International Conference on Artificial Intelligence and Statistics 17, 2014.
-
(2014)
International Conference on Artificial Intelligence and Statistics
, vol.17
-
-
Ranganath, R.1
Gerrish, S.2
Blei, D.M.3
-
21
-
-
0000147488
-
Online model selection based on the variational bayes
-
Sato, M. Online model selection based on the variational bayes. Neural Computation, 13(7): 1649-1681, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1649-1681
-
-
Sato, M.1
-
22
-
-
84969913839
-
-
arXiv.org, abs/1412.0694
-
Tank, A., Foti, N. J., and Fox, E. B. Streaming Variational Inference for Bayesian Nonparametric Mixture Models. arXiv.org, abs/1412.0694, 2014.
-
(2014)
Streaming Variational Inference for Bayesian Nonparametric Mixture Models
-
-
Tank, A.1
Foti, N.J.2
Fox, E.B.3
-
23
-
-
0032492432
-
Independent component filters of natural images compared with simple cells in primary visual cortex
-
van Hateren, J. H. and van der Schaaf, A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. of the Royal Society B: Biological Sciences, 265(1394), 1998.
-
(1998)
Proc. of the Royal Society B: Biological Sciences
, vol.265
, Issue.1394
-
-
Van Hateren, J.H.1
Van Der-Schaaf, A.2
-
24
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
Wainwright, M. J. and Jordan, M. I. Graphical Models, Exponential Families, and Variational Inference. Foundations and Trends in Machine Learning, 1(1), 2008.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
25
-
-
71149089356
-
Evaluation methods for topic models
-
Wallach, H. M., Murray, I., Salakhutdinov, R., and Mimno, D. Evaluation Methods for Topic Models. In Proceedings of the 26th International Conference on Machine Learning, 2009.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning
-
-
Wallach, H.M.1
Murray, I.2
Salakhutdinov, R.3
Mimno, D.4
-
26
-
-
84872537516
-
Online variational inference for the hierarchical dirichlet process
-
Wang, C., Paisley, J., and Blei, D. Online variational inference for the hierarchical Dirichlet process. In International Conference on Artificial Intelligence and Statistics 14, 2011.
-
(2011)
International Conference on Artificial Intelligence and Statistics
, vol.14
-
-
Wang, C.1
Paisley, J.2
Blei, D.3
-
27
-
-
84856650948
-
From learning models of natural image patches to whole image restoration
-
Zoran, D. and Weiss, Y. From learning models of natural image patches to whole image restoration. In International Conference on Computer Vision, pp. 479-486, 2011.
-
(2011)
International Conference on Computer Vision
, pp. 479-486
-
-
Zoran, D.1
Weiss, Y.2
|