메뉴 건너뛰기




Volumn Part F129685, Issue , 2017, Pages 1487-1496

Google vizier: A service for black-box optimization

Author keywords

Automated stopping; Bayesian optimization; Black box optimization; Gaussian processes; Hyperparameters; Transfer learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; LEARNING SYSTEMS;

EID: 85029112253     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/3097983.3098043     Document Type: Conference Paper
Times cited : (755)

References (33)
  • 1
    • 84882279850 scopus 로고    scopus 로고
    • Collaborative hyperparameter tuning
    • (2013)
    • Rémi Bardenet, Mátyás Brendel, Balázs Kégl, and Michele Sebag. 2013. Collaborative hyperparameter tuning. ICML 2 (2013), 199.
    • (2013) ICML , vol.2 , pp. 199
    • Bardenet, R.1    Brendel, M.2    Kégl, B.3    Sebag, M.4
  • 5
    • 0001549344 scopus 로고
    • Sequential design of experiments
    • (09 1959)
    • Herman Chernoff. 1959. Sequential Design of Experiments. Ann. Math. Statist. 30, 3 (09 1959), 755-770. https://doi.org/10.1214/aoms/1177706205
    • (1959) Ann. Math. Statist. , vol.30 , Issue.3 , pp. 755-770
    • Chernoff, H.1
  • 7
    • 77952659536 scopus 로고    scopus 로고
    • Introduction to derivative-free optimization
    • Andrew R Conn, Katya Scheinberg, and Luis N Vicente. 2009. Introduction to derivative-free optimization. SIAM.
    • (2009) SIAM
    • Conn, A.R.1    Scheinberg, K.2    Vicente, L.N.3
  • 8
    • 84942597150 scopus 로고    scopus 로고
    • Parallelizing exploration-exploitation tradeoffs in Gaussian process bandit optimization
    • (2014)
    • Thomas Desautels, Andreas Krause, and Joel W Burdick. 2014. Parallelizing exploration-exploitation tradeoffs in Gaussian process bandit optimization. Journal of Machine Learning Research 15, 1 (2014), 3873-3923.
    • (2014) Journal of Machine Learning Research , vol.15 , Issue.1 , pp. 3873-3923
    • Desautels, T.1    Krause, A.2    Burdick, J.W.3
  • 9
    • 84949921865 scopus 로고    scopus 로고
    • Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
    • Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves. In IJCAI. 3460-3468.
    • (2015) IJCAI , pp. 3460-3468
    • Domhan, T.1    Springenberg, J.T.2    Hutter, F.3
  • 13
    • 0000532482 scopus 로고
    • Response surface bandits
    • Series B (Methodological) (1995)
    • Josep Ginebra and Murray K. Clayton. 1995. Response Surface Bandits. Journal of the Royal Statistical Society. Series B (Methodological) 57, 4 (1995), 771-784. http://www.jstor.org/stable/2345943
    • (1995) Journal of the Royal Statistical Society , vol.57 , Issue.4 , pp. 771-784
    • Ginebra, J.1    Clayton, M.K.2
  • 16
    • 0035377566 scopus 로고    scopus 로고
    • Completely derandomized self-adaptation in evolution strategies
    • (2001)
    • Nikolaus Hansen and Andreas Ostermeier. 2001. Completely derandomized self-adaptation in evolution strategies. Evolutionary computation 9, 2 (2001), 159-195.
    • (2001) Evolutionary Computation , vol.9 , Issue.2 , pp. 159-195
    • Hansen, N.1    Ostermeier, A.2
  • 18
    • 84894596196 scopus 로고    scopus 로고
    • State of the art of parallel coordinates
    • Julian Heinrich and Daniel Weiskopf. 2013. State of the Art of Parallel Coordinates. In Eurographics (STARs). 95-116.
    • (2013) Eurographics (STARs) , pp. 95-116
    • Heinrich, J.1    Weiskopf, D.2
  • 20
    • 85029086989 scopus 로고    scopus 로고
    • Hyperband: A novel bandit-based approach to hyperparameter optimization
    • 1603.06560 (2016)
    • Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. 2016. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. CoRR abs/1603.06560 (2016). http://arxiv.org/abs/1603.06560
    • (2016) CoRR
    • Li, L.1    Jamieson, K.G.2    De Salvo, G.3    Rostamizadeh, A.4    Talwalkar, A.5
  • 22
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • (1965)
    • John A Nelder and Roger Mead. 1965. A simplex method for function minimization. The computer journal 7, 4 (1965), 308-313.
    • (1965) The Computer Journal , vol.7 , Issue.4 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 24
    • 84879693300 scopus 로고    scopus 로고
    • Derivative-free optimization: A review of algorithms and comparison of software implementations
    • (2013)
    • Luis Miguel Rios and Nikolaos V Sahinidis. 2013. Derivative-free optimization: a review of algorithms and comparison of software implementations. Journal of Global Optimization 56, 3 (2013), 1247-1293.
    • (2013) Journal of Global Optimization , vol.56 , Issue.3 , pp. 1247-1293
    • Rios, L.M.1    Sahinidis, N.V.2
  • 25
    • 84949985138 scopus 로고    scopus 로고
    • Taking the human out of the loop: A review of Bayesian optimization
    • (2016)
    • Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Freitas. 2016. Taking the human out of the loop: A review of bayesian optimization. Proc. IEEE 104, 1 (2016), 148-175.
    • (2016) Proc. IEEE , vol.104 , Issue.1 , pp. 148-175
    • Shahriari, B.1    Swersky, K.2    Wang, Z.3    Adams, R.P.4    De Freitas, N.5
  • 27
    • 84970022032 scopus 로고    scopus 로고
    • Scalable Bayesian optimization using deep neural networks
    • Lille, France, 6-11 July 2015 (JMLR Workshop and Conference Proceedings), Francis R. Bach and David M. Blei (Eds.)
    • Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Prabhat, and Ryan P. Adams. 2015. Scalable Bayesian Optimization Using Deep Neural Networks. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015 (JMLR Workshop and Conference Proceedings), Francis R. Bach and David M. Blei (Eds.), Vol. 37. JMLR.org, 2171-2180. http://jmlr.org/proceedings/papers/v37/snoek15.html
    • (2015) Proceedings of the 32nd International Conference on Machine Learning, ICML 2015 , vol.37 , pp. 2171-2180
    • Snoek, J.1    Rippel, O.2    Swersky, K.3    Kiros, R.4    Satish, N.5    Sundaram, N.6    Patwary, M.M.A.7    Prabhat8    Adams, R.P.9
  • 28
    • 85015791874 scopus 로고    scopus 로고
    • Bayesian optimization with robust Bayesian neural networks
    • D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc.
    • Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. 2016. Bayesian Optimization with Robust Bayesian Neural Networks. In Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc., 4134-4142. http://papers.nips.cc/paper/6117-bayesian-optimization-with-robust-bayesian-neural-networks.pdf
    • (2016) Advances in Neural Information Processing Systems , vol.29 , pp. 4134-4142
    • Springenberg, J.T.1    Klein, A.2    Falkner, S.3    Hutter, F.4
  • 29
    • 77956501313 scopus 로고    scopus 로고
    • Gaussian process optimization in the bandit setting: No regret and experimental design
    • Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. 2010. Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. ICML (2010).
    • (2010) ICML (2010)
    • Srinivas, N.1    Krause, A.2    Kakade, S.3    Seeger, M.4
  • 32
    • 84955448572 scopus 로고    scopus 로고
    • Eficient transfer learning method for automatic hyperparameter tuning
    • (2014)
    • Dani Yogatama and Gideon Mann. 2014. Eficient Transfer Learning Method for Automatic Hyperparameter Tuning. JMLR: W & CP 33 (2014), 1077-1085.
    • (2014) JMLR: W & CP , vol.33 , pp. 1077-1085
    • Yogatama, D.1    Mann, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.