메뉴 건너뛰기




Volumn , Issue , 2013, Pages 2080-2087

Latent task adaptation with large-scale hierarchies

Author keywords

image classification; large scale; object recognition; optimization

Indexed keywords

ALGORITHMS; INFERENCE ENGINES; OBJECT RECOGNITION; OPTIMIZATION;

EID: 84898811584     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.260     Document Type: Conference Paper
Times cited : (9)

References (26)
  • 1
    • 84898930325 scopus 로고    scopus 로고
    • Constructing a hypothesis space from the web for large-scale bayesian word learning
    • J. T. Abbott, J. L. Austerweil, and T. L. Griffiths. Constructing a hypothesis space from the web for large-scale bayesian word learning. In Annu. Conf. Cog. Sci. Soc., 2012.
    • (2012) Annu. Conf. Cog. Sci. Soc.
    • Abbott, J.T.1    Austerweil, J.L.2    Griffiths, T.L.3
  • 4
    • 84866674680 scopus 로고    scopus 로고
    • Hedging your bets: Optimizing accuracy-specificity trade-offs in large scale visual recognition
    • J. Deng, J. Krause, A. C. Berg, and L. Fei-Fei. Hedging your bets: Optimizing accuracy-specificity trade-offs in large scale visual recognition. In CVPR, 2012.
    • (2012) CVPR
    • Deng, J.1    Krause, J.2    Berg, A.C.3    Fei-Fei, L.4
  • 5
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 12:2121-2159, 2010.
    • (2010) JMLR , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 6
    • 84856640018 scopus 로고    scopus 로고
    • Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance
    • R. Farrell, O. Oza, N. Zhang, V. I. Morariu, T. Darrell, and L. S. Davis. Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance. In ICCV, 2011.
    • (2011) ICCV
    • Farrell, R.1    Oza, O.2    Zhang, N.3    Morariu, V.I.4    Darrell, T.5    Davis, L.S.6
  • 8
    • 84898777362 scopus 로고    scopus 로고
    • Discriminative learning of relaxed hierarchy for large-scale visual recognition
    • T. Gao and D. Koller. Discriminative learning of relaxed hierarchy for large-scale visual recognition. In ICCV. IEEE, 2011.
    • (2011) ICCV. IEEE
    • Gao, T.1    Koller, D.2
  • 10
    • 84866685025 scopus 로고    scopus 로고
    • Large-scale image classification with trace-norm regularization
    • Z. Harchaoui, M. Douze, M. Paulin, M. Dudik, and J. Malick. Large-scale image classification with trace-norm regularization. In CVPR, 2012.
    • (2012) CVPR
    • Harchaoui, Z.1    Douze, M.2    Paulin, M.3    Dudik, M.4    Malick, J.5
  • 13
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 14
    • 80052895155 scopus 로고    scopus 로고
    • What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
    • B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In CVPR, 2011.
    • (2011) CVPR
    • Kulis, B.1    Saenko, K.2    Darrell, T.3
  • 15
    • 70450219021 scopus 로고    scopus 로고
    • Towards total scene understanding: Classification, annotation and segmentation in an automatic framework
    • L.-J. Li, R. Socher, and L. Fei-Fei. Towards total scene understanding: Classification, annotation and segmentation in an automatic framework. In CVPR, 2009.
    • (2009) CVPR
    • Li, L.-J.1    Socher, R.2    Fei-Fei, L.3
  • 16
    • 80052870284 scopus 로고    scopus 로고
    • Large-scale image classification: Fast feature extraction and svm training
    • Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. Huang. Large-scale image classification: fast feature extraction and svm training. In CVPR, 2011.
    • (2011) CVPR
    • Lin, Y.1    Lv, F.2    Zhu, S.3    Yang, M.4    Cour, T.5    Yu, K.6    Cao, L.7    Huang, T.8
  • 18
    • 51949106645 scopus 로고    scopus 로고
    • Selftaught learning: Transfer learning from unlabeled data
    • R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Selftaught learning: transfer learning from unlabeled data. In ICML, 2007.
    • (2007) ICML
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5
  • 19
    • 78149301639 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In ECCV, 2010.
    • (2010) ECCV
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 20
    • 80052905403 scopus 로고    scopus 로고
    • Learning to share visual appearance for multiclass object detection
    • R. Salakhutdinov, A. Torralba, and J. Tenenbaum. Learning to share visual appearance for multiclass object detection. In CVPR, 2011.
    • (2011) CVPR
    • Salakhutdinov, R.1    Torralba, A.2    Tenenbaum, J.3
  • 21
    • 80052885179 scopus 로고    scopus 로고
    • High-dimensional signature compression for large-scale image classification
    • J. Śanchez and F. Perronnin. High-dimensional signature compression for large-scale image classification. In CVPR, 2011.
    • (2011) CVPR
    • Śanchez, J.1    Perronnin, F.2
  • 22
    • 0023223978 scopus 로고
    • Toward a universal law of generalization for psychological science
    • R. N. Shepard et al. Toward a universal law of generalization for psychological science. Science, 237(4820):1317-1323, 1987.
    • (1987) Science , vol.237 , Issue.4820 , pp. 1317-1323
    • Shepard, R.N.1
  • 23
    • 0035735751 scopus 로고    scopus 로고
    • Generalization, similarity, and bayesian inference
    • J. B. Tenenbaum, T. L. Griffiths, et al. Generalization, similarity, and bayesian inference. Behavioral and brain sciences, 24(4):629-640, 2001.
    • (2001) Behavioral and Brain Sciences , vol.24 , Issue.4 , pp. 629-640
    • Tenenbaum, J.B.1    Griffiths, T.L.2
  • 24
    • 33746260413 scopus 로고    scopus 로고
    • Theorybased bayesian models of inductive learning and reasoning
    • J. B. Tenenbaum, T. L. Griffiths, C. Kemp, et al. Theorybased bayesian models of inductive learning and reasoning. Trends in cognitive sciences, 10(7):309-318, 2006.
    • (2006) Trends in Cognitive Sciences , vol.10 , Issue.7 , pp. 309-318
    • Tenenbaum, J.B.1    Griffiths, T.L.2    Kemp, C.3
  • 25
    • 0037500818 scopus 로고    scopus 로고
    • Contextual priming for object detection
    • A. Torralba. Contextual priming for object detection. IJCV, 53(2):169-191, 2003.
    • (2003) IJCV , vol.53 , Issue.2 , pp. 169-191
    • Torralba, A.1
  • 26
    • 34248578061 scopus 로고    scopus 로고
    • Word learning as bayesian inference
    • F. Xu, J. B. Tenenbaum, et al. Word learning as bayesian inference. Psychological review, 114(2):245, 2007.
    • (2007) Psychological Review , vol.114 , Issue.2 , pp. 245
    • Xu, F.1    Tenenbaum, J.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.