메뉴 건너뛰기




Volumn , Issue , 2017, Pages 193-201

Collaborative metric learning

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING ALGORITHMS; NEAREST NEIGHBOR SEARCH; WORLD WIDE WEB;

EID: 85041898938     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/3038912.3052639     Document Type: Conference Paper
Times cited : (596)

References (54)
  • 1
    • 77950940282 scopus 로고    scopus 로고
    • Flda: Matrix factorization through latent dirichlet allocation
    • D. Agarwal and B.-C. Chen. flda: matrix factorization through latent dirichlet allocation. In WSDM’10, pages 91–100. ACM, 2010.
    • (2010) WSDM’10 , pp. 91-100
    • Agarwal, D.1    Chen, B.-C.2
  • 4
    • 70849112325 scopus 로고    scopus 로고
    • Lsh forest: Self-tuning indexes for similarity search
    • M. Bawa, T. Condie, and P. Ganesan. Lsh forest: self-tuning indexes for similarity search. In WWW’05, pages 651–660. ACM, 2005.
    • (2005) WWW’05 , pp. 651-660
    • Bawa, M.1    Condie, T.2    Ganesan, P.3
  • 7
    • 85006064497 scopus 로고    scopus 로고
    • Efficient sample mining for object detection
    • O. Canévet and F. Fleuret. Efficient sample mining for object detection. In ACML, 2014.
    • (2014) ACML
    • Canévet, O.1    Fleuret, F.2
  • 8
    • 24644436425 scopus 로고    scopus 로고
    • Learning a similarity metric discriminatively, with application to face verification
    • S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face verification. In CVPR’05, volume 1, pages 539–546. IEEE, 2005.
    • (2005) CVPR’05 , vol.1 , pp. 539-546
    • Chopra, S.1    Hadsell, R.2    LeCun, Y.3
  • 10
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , Issue.Jul , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 18
    • 85034062033 scopus 로고    scopus 로고
    • Immersive recommendation: News and event recommendations using personal digital traces
    • International World Wide Web Conferences Steering Committee
    • C.-K. Hsieh, L. Yang, H. Wei, M. Naaman, and D. Estrin. Immersive recommendation: News and event recommendations using personal digital traces. In WWW’16, pages 51–62. International World Wide Web Conferences Steering Committee, 2016.
    • (2016) WWW’16 , pp. 51-62
    • Hsieh, C.-K.1    Yang, L.2    Wei, H.3    Naaman, M.4    Estrin, D.5
  • 19
    • 67049164166 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Ieee
    • Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM’08, pages 263–272. Ieee, 2008.
    • (2008) ICDM’08 , pp. 263-272
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 20
    • 84885665252 scopus 로고    scopus 로고
    • Accurately interpreting clickthrough data as implicit feedback
    • Acm
    • T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting clickthrough data as implicit feedback. In SIGIR’05, pages 154–161. Acm, 2005.
    • (2005) SIGIR’05 , pp. 154-161
    • Joachims, T.1    Granka, L.2    Pan, B.3    Hembrooke, H.4    Gay, G.5
  • 22
    • 8644249427 scopus 로고    scopus 로고
    • Implicit feedback for inferring user preference: A bibliography
    • D. Kelly and J. Teevan. Implicit feedback for inferring user preference: a bibliography. In ACM SIGIR Forum, volume 37, pages 18–28. ACM, 2003.
    • (2003) ACM SIGIR Forum , vol.37 , pp. 18-28
    • Kelly, D.1    Teevan, J.2
  • 23
    • 78649948228 scopus 로고    scopus 로고
    • Collaborative filtering via euclidean embedding
    • M. Khoshneshin and W. N. Street. Collaborative filtering via euclidean embedding. In RecSys’10, pages 87–94. ACM, 2010.
    • (2010) RecSys’10 , pp. 87-94
    • Khoshneshin, M.1    Street, W.N.2
  • 24
    • 84887571114 scopus 로고    scopus 로고
    • Towards scalable and accurate item-oriented recommendations
    • N. Koenigstein and Y. Koren. Towards scalable and accurate item-oriented recommendations. In RecSys’13, pages 419–422. ACM, 2013.
    • (2013) RecSys’13 , pp. 419-422
    • Koenigstein, N.1    Koren, Y.2
  • 25
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, C. Volinsky, et al. Matrix factorization techniques for recommender systems. Computer, 42(8):30–37, 2009.
    • (2009) Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 26
    • 84866667088 scopus 로고    scopus 로고
    • Large scale metric learning from equivalence constraints
    • M. Köstinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof. Large scale metric learning from equivalence constraints. In CVPR’12, pages 2288–2295. IEEE, 2012.
    • (2012) CVPR’12 , pp. 2288-2295
    • Köstinger, M.1    Hirzer, M.2    Wohlhart, P.3    Roth, P.M.4    Bischof, H.5
  • 28
    • 85043988578 scopus 로고    scopus 로고
    • M. Kula. Lightfm. https://github.com/lyst/lightfm, 2016.
    • (2016) Lightfm
    • Kula, M.1
  • 31
    • 0037252945 scopus 로고    scopus 로고
    • Amazon. Com recommendations: Item-to-item collaborative filtering
    • G. Linden, B. Smith, and J. York. Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet computing, 7(1):76–80, 2003.
    • (2003) IEEE Internet Computing , vol.7 , Issue.1 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 32
    • 84960123541 scopus 로고    scopus 로고
    • Large margin metric learning for multi-label prediction
    • W. Liu and I. W. Tsang. Large margin metric learning for multi-label prediction. In AAAI’15, pages 2800–2806, 2015.
    • (2015) AAAI’15 , pp. 2800-2806
    • Liu, W.1    Tsang, I.W.2
  • 36
    • 84866036468 scopus 로고    scopus 로고
    • Maximum inner-product search using cone trees
    • P. Ram and A. G. Gray. Maximum inner-product search using cone trees. In KDD’12, pages 931–939. ACM, 2012.
    • (2012) KDD’12 , pp. 931-939
    • Ram, P.1    Gray, A.G.2
  • 37
    • 79951760087 scopus 로고    scopus 로고
    • Factorization machines
    • S. Rendle. Factorization machines. In ICDM’10, pages 995–1000. IEEE, 2010.
    • (2010) ICDM’10 , pp. 995-1000
    • Rendle, S.1
  • 38
    • 78650134987 scopus 로고    scopus 로고
    • Bpr: Bayesian personalized ranking from implicit feedback
    • AUAI Press
    • S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In UAI’09, pages 452–461. AUAI Press, 2009.
    • (2009) UAI’09 , pp. 452-461
    • Rendle, S.1    Freudenthaler, C.2    Gantner, Z.3    Schmidt-Thieme, L.4
  • 39
    • 77950902603 scopus 로고    scopus 로고
    • Pairwise interaction tensor factorization for personalized tag recommendation
    • S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor factorization for personalized tag recommendation. In WSDM’10, pages 81–90. ACM, 2010.
    • (2010) WSDM’10 , pp. 81-90
    • Rendle, S.1    Schmidt-Thieme, L.2
  • 40
    • 85030174634 scopus 로고
    • Grouplens: An open architecture for collaborative filtering of netnews
    • P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an open architecture for collaborative filtering of netnews. In CSCW’94, pages 175–186. ACM, 1994.
    • (1994) CSCW’94 , pp. 175-186
    • Resnick, P.1    Iacovou, N.2    Suchak, M.3    Bergstrom, P.4    Riedl, J.5
  • 42
    • 84937868714 scopus 로고    scopus 로고
    • Asymmetric lsh (alsh) for sublinear time maximum inner product search (mips)
    • A. Shrivastava and P. Li. Asymmetric lsh (alsh) for sublinear time maximum inner product search (mips). In NIPS’14, pages 2321–2329, 2014.
    • (2014) NIPS’14 , pp. 2321-2329
    • Shrivastava, A.1    Li, P.2
  • 43
    • 84911198048 scopus 로고    scopus 로고
    • Deepface: Closing the gap to human-level performance in face verification
    • Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In CVPR’14, pages 1701–1708, 2014.
    • (2014) CVPR’14 , pp. 1701-1708
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 46
    • 80052666619 scopus 로고    scopus 로고
    • Collaborative topic modeling for recommending scientific articles
    • C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles. In KDD’11, pages 448–456. ACM, 2011.
    • (2011) KDD’11 , pp. 448-456
    • Wang, C.1    Blei, D.M.2
  • 47
    • 84951872462 scopus 로고    scopus 로고
    • Collaborative deep learning for recommender systems
    • H. Wang, N. Wang, and D.-Y. Yeung. Collaborative deep learning for recommender systems. In KDD’15, pages 1235–1244. ACM, 2015.
    • (2015) KDD’15 , pp. 1235-1244
    • Wang, H.1    Wang, N.2    Yeung, D.-Y.3
  • 48
    • 85162550129 scopus 로고    scopus 로고
    • Metric learning with multiple kernels
    • J. Wang, H. T. Do, A. Woznica, and A. Kalousis. Metric learning with multiple kernels. In NIPS’11, pages 1170–1178, 2011.
    • (2011) NIPS’11 , pp. 1170-1178
    • Wang, J.1    Do, H.T.2    Woznica, A.3    Kalousis, A.4
  • 49
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research, 10(Feb):207–244, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , Issue.Feb , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 50
    • 77955654853 scopus 로고    scopus 로고
    • Large scale image annotation: Learning to rank with joint word-image embeddings
    • J. Weston, S. Bengio, and N. Usunier. Large scale image annotation: learning to rank with joint word-image embeddings. Machine learning, 81(1):21–35, 2010.
    • (2010) Machine Learning , vol.81 , Issue.1 , pp. 21-35
    • Weston, J.1    Bengio, S.2    Usunier, N.3
  • 51
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning with application to clustering with side-information. NIPS’03, 15:505–512, 2003.
    • (2003) NIPS’03 , vol.15 , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 52
    • 84871096718 scopus 로고    scopus 로고
    • From sbow to dcot marginalized encoders for text representation
    • Z. E. Xu, M. Chen, K. Q. Weinberger, and F. Sha. From sbow to dcot marginalized encoders for text representation. In CIKM’12, pages 1879–1884. ACM, 2012.
    • (2012) CIKM’12 , pp. 1879-1884
    • Xu, Z.E.1    Chen, M.2    Weinberger, K.Q.3    Sha, F.4
  • 53
    • 84958236027 scopus 로고    scopus 로고
    • Improving latent factor models via personalized feature projection for one class recommendation
    • T. Zhao, J. McAuley, and I. King. Improving latent factor models via personalized feature projection for one class recommendation. In CIKM’15, pages 821–830. ACM, 2015.
    • (2015) CIKM’15 , pp. 821-830
    • Zhao, T.1    McAuley, J.2    King, I.3
  • 54
    • 33645657113 scopus 로고    scopus 로고
    • Improving recommendation lists through topic diversification
    • C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists through topic diversification. In WWW’05, pages 22–32. ACM, 2005.
    • (2005) WWW’05 , pp. 22-32
    • Ziegler, C.-N.1    McNee, S.M.2    Konstan, J.A.3    Lausen, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.