메뉴 건너뛰기




Volumn , Issue , 2010, Pages 87-94

Collaborative filtering via Euclidean embedding

Author keywords

Collaborative filtering; Euclidean embedding; Fast recommendation generation; Multidimen sional scaling

Indexed keywords

COLLABORATIVE FILTERING; EMBEDDING METHOD; EUCLIDEAN; EUCLIDEAN SPACES; FAST RECOMMENDATION GENERATION; FILTERING ALGORITHM; LATENT FACTOR; MATRIX FACTORIZATIONS; MULTIDIMEN-SIONAL SCALING; ONLINE IMPLEMENTATION; ONLINE RECOMMENDER SYSTEMS; RECOMMENDATION SYSTEMS;

EID: 78649948228     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1864708.1864728     Document Type: Conference Paper
Times cited : (72)

References (25)
  • 1
    • 0032665137 scopus 로고    scopus 로고
    • Incremental multidimensional scaling method for database visualization
    • W. Basalaj. Incremental multidimensional scaling method for database visualization. In Proc. Visual Data Exploration and Analysis VI, SPIE, volume 3643, pages 149-158, 1999.
    • (1999) Proc. Visual Data Exploration and Analysis VI, SPIE , vol.3643 , pp. 149-158
    • Basalaj, W.1
  • 4
    • 33645673972 scopus 로고    scopus 로고
    • Fast online SVD revisions for lightweight recommender systems
    • M. Brand. Fast online SVD revisions for lightweight recommender systems. In SIAM International Conference on Data Mining, pages 37-46, 2003.
    • (2003) SIAM International Conference on Data Mining , pp. 37-46
    • Brand, M.1
  • 6
    • 0030406791 scopus 로고    scopus 로고
    • A linear iteration time layout algorithm for visualising high-dimensional data
    • 127-ff., Los Alamitos, CA, USA, IEEE Computer Society Press
    • M. Chalmers. A linear iteration time layout algorithm for visualising high-dimensional data. In VIS '96: Proceedings of the 7th conference on Visualization '96, pages 127-fi., Los Alamitos, CA, USA, 1996. IEEE Computer Society Press.
    • (1996) VIS '96: Proceedings of the 7th Conference on Visualization '96
    • Chalmers, M.1
  • 9
    • 0000968571 scopus 로고
    • Multiclus: A new method for simultaneously performing multidimensional scaling and cluster analysis
    • W. DeSarbo, D. Howard, and K. Jedidi. Multiclus: A new method for simultaneously performing multidimensional scaling and cluster analysis. Psychometrika, 56(1):121-136, 1991.
    • (1991) Psychometrika , vol.56 , Issue.1 , pp. 121-136
    • Desarbo, W.1    Howard, D.2    Jedidi, K.3
  • 10
    • 0033650820 scopus 로고    scopus 로고
    • Swami: A framework for collaborative filtering algorithm development and evaluation
    • Citeseer
    • D. Fisher, K. Hildrum, J. Hong, M. Newman, M. Thomas, and R. Vuduc. Swami: A framework for collaborative filtering algorithm development and evaluation. In SIGIR 2000. Citeseer, 2000.
    • (2000) SIGIR 2000
    • Fisher, D.1    Hildrum, K.2    Hong, J.3    Newman, M.4    Thomas, M.5    Vuduc, R.6
  • 17
    • 24944533365 scopus 로고
    • Nonmetric multidimensional scaling: A numerical method
    • J. Kruskal. Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29(2):115-129, 1964.
    • (1964) Psychometrika , vol.29 , Issue.2 , pp. 115-129
    • Kruskal, J.1
  • 19
    • 84997941468 scopus 로고    scopus 로고
    • Fast multidimensional scaling through sampling, springs and interpolation
    • A. Morrison, G. Ross, and M. Chalmers. Fast multidimensional scaling through sampling, springs and interpolation. Information Visualization, 2(1):68-77, 2003.
    • (2003) Information Visualization , vol.2 , Issue.1 , pp. 68-77
    • Morrison, A.1    Ross, G.2    Chalmers, M.3
  • 20
    • 57949113756 scopus 로고    scopus 로고
    • Improving regularized singular value decomposition for collaborative filtering
    • A. Paterek. Improving regularized singular value decomposition for collaborative filtering. In KDD 2007: Netix Competition Workshop.
    • KDD 2007: Netix Competition Workshop
    • Paterek, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.