메뉴 건너뛰기




Volumn 2015-August, Issue , 2015, Pages 1235-1244

Collaborative deep learning for recommender systems

Author keywords

Deep learning; Recommender systems; Text mining; Topic model

Indexed keywords

BAYESIAN NETWORKS; COLLABORATIVE FILTERING; FEEDBACK; INFORMATION FILTERING; RECOMMENDER SYSTEMS;

EID: 84951872462     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2783258.2783273     Document Type: Conference Paper
Times cited : (1640)

References (41)
  • 1
    • 70350664430 scopus 로고    scopus 로고
    • Regression-based latent factor models
    • D. Agarwal and B.-C. Chen. Regression-based latent factor models. In KDD, pages 19-28, 2009.
    • (2009) KDD , pp. 19-28
    • Agarwal, D.1    Chen, B.-C.2
  • 2
    • 84896497059 scopus 로고    scopus 로고
    • Understanding dropout
    • P. Baldi and P. J. Sadowski. Understanding dropout. In NIPS, pages 2814-2822, 2013.
    • (2013) NIPS , pp. 2814-2822
    • Baldi, P.1    Sadowski, P.J.2
  • 3
    • 84899017362 scopus 로고    scopus 로고
    • Generalized denoising auto-encoders as generative models
    • Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized denoising auto-encoders as generative models. In NIPS, pages 899-907, 2013.
    • (2013) NIPS , pp. 899-907
    • Bengio, Y.1    Yao, L.2    Alain, G.3    Vincent, P.4
  • 5
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. JMLR, 3:993-1022, 2003.
    • (2003) JMLR , vol.3 , pp. 993-1022
    • Blei, D.M.1    Ng, A.Y.2    Jordan, M.I.3
  • 7
    • 84867129067 scopus 로고    scopus 로고
    • Marginalized denoising autoencoders for domain adaptation
    • M. Chen, Z. E. Xu, K. Q. Weinberger, and F. Sha. Marginalized denoising autoencoders for domain adaptation. In ICML, pages 767-774, 2012.
    • (2012) ICML , pp. 767-774
    • Chen, M.1    Xu, Z.E.2    Weinberger, K.Q.3    Sha, F.4
  • 8
    • 84873429648 scopus 로고    scopus 로고
    • Svdfeature: A toolkit for feature-based collaborative filtering
    • T. Chen, W. Zhang, Q. Lu, K. Chen, Z. Zheng, and Y. Yu. Svdfeature: a toolkit for feature-based collaborative filtering. JMLR, 13:3619-3622, 2012.
    • (2012) JMLR , vol.13 , pp. 3619-3622
    • Chen, T.1    Zhang, W.2    Lu, Q.3    Chen, K.4    Zheng, Z.5    Yu, Y.6
  • 9
    • 84897544713 scopus 로고    scopus 로고
    • A non-iid framework for collaborative filtering with restricted boltzmann machines
    • K. Georgiev and P. Nakov. A non-iid framework for collaborative filtering with restricted boltzmann machines. In ICML, pages 1148-1156, 2013.
    • (2013) ICML , pp. 1148-1156
    • Georgiev, K.1    Nakov, P.2
  • 10
    • 34250704813 scopus 로고    scopus 로고
    • Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks
    • A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In ICML, pages 369-376, 2006.
    • (2006) ICML , pp. 369-376
    • Graves, A.1    Fernández, S.2    Gomez, F.J.3    Schmidhuber, J.4
  • 12
    • 84891773848 scopus 로고    scopus 로고
    • Personalized recommendation via cross-domain triadic factorization
    • L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and C. Zhu. Personalized recommendation via cross-domain triadic factorization. In WWW, pages 595-606, 2013.
    • (2013) WWW , pp. 595-606
    • Hu, L.1    Cao, J.2    Xu, G.3    Cao, L.4    Gu, Z.5    Zhu, C.6
  • 13
    • 67049164166 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM, pages 263-272, 2008.
    • (2008) ICDM , pp. 263-272
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 14
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2):183-233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.K.4
  • 15
    • 84906922163 scopus 로고    scopus 로고
    • A convolutional neural network for modelling sentences
    • N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolutional neural network for modelling sentences. ACL, pages 655-665, 2014.
    • (2014) ACL , pp. 655-665
    • Kalchbrenner, N.1    Grefenstette, E.2    Blunsom, P.3
  • 16
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, pages 1106-1114, 2012.
    • (2012) NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 17
    • 85142688646 scopus 로고
    • Newsweeder: Learning to filter netnews
    • K. Lang. Newsweeder: Learning to filter netnews. In ICML, pages 331-339, 1995.
    • (1995) ICML , pp. 331-339
    • Lang, K.1
  • 18
    • 84861038979 scopus 로고    scopus 로고
    • Generalized latent factor models for social network analysis
    • W.-J. Li, D.-Y. Yeung, and Z. Zhang. Generalized latent factor models for social network analysis. In IJCAI, pages 1705-1710, 2011.
    • (2011) IJCAI , pp. 1705-1710
    • Li, W.-J.1    Yeung, D.-Y.2    Zhang, Z.3
  • 19
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • D. J. C. MacKay. A practical Bayesian framework for backpropagation networks. Neural Computation, 4(3):448-472, 1992.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 20
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, pages 3111-3119, 2013.
    • (2013) NIPS , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 21
    • 84898973716 scopus 로고    scopus 로고
    • Deep content-based music recommendation
    • A. V. D. Oord, S. Dieleman, and B. Schrauwen. Deep content-based music recommendation. In NIPS, pages 2643-2651, 2013.
    • (2013) NIPS , pp. 2643-2651
    • Oord, A.V.D.1    Dieleman, S.2    Schrauwen, B.3
  • 22
    • 84867125398 scopus 로고    scopus 로고
    • Collaborative topic regression with social matrix factorization for recommendation systems
    • S. Purushotham, Y. Liu, and C.-C. J. Kuo. Collaborative topic regression with social matrix factorization for recommendation systems. In ICML, pages 759-766, 2012.
    • (2012) ICML , pp. 759-766
    • Purushotham, S.1    Liu, Y.2    Kuo, C.-C.J.3
  • 23
    • 78650134987 scopus 로고    scopus 로고
    • BPR: Bayesian personalized ranking from implicit feedback
    • S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian personalized ranking from implicit feedback. In UAI, pages 452-461, 2009.
    • (2009) UAI , pp. 452-461
    • Rendle, S.1    Freudenthaler, C.2    Gantner, Z.3    Schmidt-Thieme, L.4
  • 24
    • 84890454527 scopus 로고    scopus 로고
    • Low-rank matrix factorization for deep neural network training with high-dimensional output targets
    • T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran. Low-rank matrix factorization for deep neural network training with high-dimensional output targets. In ICASSP, pages 6655-6659, 2013.
    • (2013) ICASSP , pp. 6655-6659
    • Sainath, T.N.1    Kingsbury, B.2    Sindhwani, V.3    Arisoy, E.4    Ramabhadran, B.5
  • 25
    • 84862286946 scopus 로고    scopus 로고
    • Deep boltzmann machines
    • R. Salakhutdinov and G. E. Hinton. Deep Boltzmann machines. In AISTATS, pages 448-455, 2009.
    • (2009) AISTATS , pp. 448-455
    • Salakhutdinov, R.1    Hinton, G.E.2
  • 27
    • 48349135120 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS, pages 1257-1264, 2007.
    • (2007) NIPS , pp. 1257-1264
    • Salakhutdinov, R.1    Mnih, A.2
  • 28
    • 34547983260 scopus 로고    scopus 로고
    • Restricted boltzmann machines for collaborative filtering
    • R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted boltzmann machines for collaborative filtering. In ICML, pages 791-798, 2007.
    • (2007) ICML , pp. 791-798
    • Salakhutdinov, R.1    Mnih, A.2    Hinton, G.E.3
  • 29
    • 77952951613 scopus 로고    scopus 로고
    • Automatic tag expansion using visual similarity for photo sharing websites
    • S. G. Sevil, O. Kucuktunc, P. Duygulu, and F. Can. Automatic tag expansion using visual similarity for photo sharing websites. Multimedia Tools Appl., 49(1):81-99, 2010.
    • (2010) Multimedia Tools Appl. , vol.49 , Issue.1 , pp. 81-99
    • Sevil, S.G.1    Kucuktunc, O.2    Duygulu, P.3    Can, F.4
  • 30
    • 65449121541 scopus 로고    scopus 로고
    • Relational learning via collective matrix factorization
    • A. P. Singh and G. J. Gordon. Relational learning via collective matrix factorization. In KDD, pages 650-658, 2008.
    • (2008) KDD , pp. 650-658
    • Singh, A.P.1    Gordon, G.J.2
  • 31
    • 0003568694 scopus 로고    scopus 로고
    • A guide to distribution theory and fourier transforms
    • R. S. Strichartz. A Guide to Distribution Theory and Fourier Transforms. World Scientific, 2003.
    • (2003) World Scientific
    • Strichartz, R.S.1
  • 32
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. JMLR, 11:3371-3408, 2010.
    • (2010) JMLR , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 33
    • 84896538964 scopus 로고    scopus 로고
    • Dropout training as adaptive regularization
    • S. Wager, S. Wang, and P. Liang. Dropout training as adaptive regularization. In NIPS, pages 351-359, 2013.
    • (2013) NIPS , pp. 351-359
    • Wager, S.1    Wang, S.2    Liang, P.3
  • 34
    • 80052666619 scopus 로고    scopus 로고
    • Collaborative topic modeling for recommending scientific articles
    • C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles. In KDD, pages 448-456, 2011.
    • (2011) KDD , pp. 448-456
    • Wang, C.1    Blei, D.M.2
  • 35
    • 84896062199 scopus 로고    scopus 로고
    • Collaborative topic regression with social regularization for tag recommendation
    • H. Wang, B. Chen, and W.-J. Li. Collaborative topic regression with social regularization for tag recommendation. In IJCAI, pages 2719-2725, 2013.
    • (2013) IJCAI , pp. 2719-2725
    • Wang, H.1    Chen, B.2    Li, W.-J.3
  • 36
    • 84926636283 scopus 로고    scopus 로고
    • Relational collaborative topic regression for recommender systems
    • H. Wang and W. Li. Relational collaborative topic regression for recommender systems. TKDE, 27(5):1343-1355, 2015.
    • (2015) TKDE , vol.27 , Issue.5 , pp. 1343-1355
    • Wang, H.1    Li, W.2
  • 37
    • 84958767160 scopus 로고    scopus 로고
    • Relational stacked denoising autoencoder for tag recommendation
    • H. Wang, X. Shi, and D. Yeung. Relational stacked denoising autoencoder for tag recommendation. In AAAI, pages 3052-3058, 2015.
    • (2015) AAAI , pp. 3052-3058
    • Wang, H.1    Shi, X.2    Yeung, D.3
  • 38
    • 84898957022 scopus 로고    scopus 로고
    • Learning a deep compact image representation for visual tracking
    • N. Wang and D.-Y. Yeung. Learning a deep compact image representation for visual tracking. In NIPS, pages 809-817, 2013.
    • (2013) NIPS , pp. 809-817
    • Wang, N.1    Yeung, D.-Y.2
  • 39
    • 84913528232 scopus 로고    scopus 로고
    • Improving content-based and hybrid music recommendation using deep learning
    • X. Wang and Y. Wang. Improving content-based and hybrid music recommendation using deep learning. In ACM MM, pages 627-636, 2014.
    • (2014) ACM MM , pp. 627-636
    • Wang, X.1    Wang, Y.2
  • 40
    • 84906335433 scopus 로고    scopus 로고
    • Temporal qos-aware web service recommendation via non-negative tensor factorization
    • W. Zhang, H. Sun, X. Liu, and X. Guo. Temporal qos-aware web service recommendation via non-negative tensor factorization. In WWW, pages 585-596, 2014.
    • (2014) WWW , pp. 585-596
    • Zhang, W.1    Sun, H.2    Liu, X.3    Guo, X.4
  • 41
    • 84866013626 scopus 로고    scopus 로고
    • Learning binary codes for collaborative filtering
    • K. Zhou and H. Zha. Learning binary codes for collaborative filtering. In KDD, pages 498-506, 2012.
    • (2012) KDD , pp. 498-506
    • Zhou, K.1    Zha, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.