메뉴 건너뛰기




Volumn , Issue , 2014, Pages 257-264

Speeding up the Xbox recommender system using a euclidean transformation for inner-product spaces

Author keywords

Fast retrieval; Inner product search; Matrix factorization; Recommender systems

Indexed keywords

COLLABORATIVE FILTERING; DATA STRUCTURES; DIMENSIONALITY REDUCTION; FACTORIZATION; HAMMING DISTANCE; LARGE DATASET; MATRIX ALGEBRA; METADATA; ONLINE SYSTEMS; REAL TIME SYSTEMS; RECOMMENDER SYSTEMS; TREES (MATHEMATICS);

EID: 84908888240     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2645710.2645741     Document Type: Conference Paper
Times cited : (170)

References (21)
  • 1
    • 38749118638 scopus 로고    scopus 로고
    • Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
    • Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In FOCS, pages 459-468, 2006.
    • (2006) FOCS , pp. 459-468
    • Andoni, A.1    Indyk, P.2
  • 3
    • 0016557674 scopus 로고
    • Multidimensional binary search trees used for associative searching
    • September
    • Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Commun. ACM, 18(9):509-517, September 1975.
    • (1975) Commun. ACM , vol.18 , Issue.9 , pp. 509-517
    • Bentley, J.L.1
  • 7
  • 12
    • 84887573819 scopus 로고    scopus 로고
    • Xbox movies recommendations: Variational Bayes matrix factorization with embedded feature selection
    • Noam Koenigstein and Ulrich Paquet. Xbox movies recommendations: Variational Bayes matrix factorization with embedded feature selection. In Proc. 7th ACM Conference on Recommender Systems, 2013.
    • (2013) Proc. 7th ACM Conference on Recommender Systems
    • Koenigstein, N.1    Paquet, U.2
  • 13
    • 84887592222 scopus 로고    scopus 로고
    • Efficient retrieval of recommendations in a matrix factorization framework
    • Noam Koenigstein, Parikshit Ram, and Yuval Shavitt. Efficient retrieval of recommendations in a matrix factorization framework. In CIKM, 2012.
    • (2012) CIKM
    • Koenigstein, N.1    Ram, P.2    Shavitt, Y.3
  • 14
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 2009.
    • (2009) IEEE Computer
    • Koren, Y.1    Robert M. Bell2    Volinsky, C.3
  • 15
    • 0035441284 scopus 로고    scopus 로고
    • A fast nearest-neighbor algorithm based on a principal axis search tree
    • September
    • James McNames. A fast nearest-neighbor algorithm based on a principal axis search tree. IEEE Trans. Pattern Anal. Mach. Intell., 23(9):964-976, September 2001.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell , vol.23 , Issue.9 , pp. 964-976
    • Mcnames, J.1
  • 19
    • 84899031888 scopus 로고    scopus 로고
    • Which space partitioning tree to use for search?
    • In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger, editors
    • Parikshit Ram and Alexander G. Gray. Which space partitioning tree to use for search? In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger, editors, NIPS, pages 656-664, 2013.
    • (2013) NIPS , pp. 656-664
    • Ram, P.1    Gray, A.G.2
  • 20
    • 84880249015 scopus 로고    scopus 로고
    • Nearest-neighbor search on a time budget via max-margin trees
    • SIAM/Omnipress
    • Parikshit Ram, Dongryeol Lee, and Alexander G. Gray. Nearest-neighbor search on a time budget via max-margin trees. In SDM, pages 1011-1022. SIAM/Omnipress, 2012.
    • (2012) SDM , pp. 1011-1022
    • Ram, P.1    Lee, D.2    Gray, A.G.3
  • 21
    • 0025796458 scopus 로고
    • Refinements to nearest-neighbor searching in k-dimensional trees
    • Robert F. Sproull. Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica, 6(4):579-589, 1991.
    • (1991) Algorithmica , vol.6 , Issue.4 , pp. 579-589
    • Sproull, R.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.