-
1
-
-
84860850270
-
Build your own music recommender by modeling internet radio streams
-
N. Aizenberg, Y. Koren, and O. Somekh. Build your own music recommender by modeling internet radio streams. In WWW, 2012.
-
(2012)
WWW
-
-
Aizenberg, N.1
Koren, Y.2
Somekh, O.3
-
5
-
-
84887571737
-
The yahoo! music dataset and kdd-cup'11
-
G. Dror, N. Koenigstein, Y. Koren, and M. Weimer. The yahoo! music dataset and kdd-cup'11. Journal Of Machine Learning Research, 18:3-18, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.18
, Issue.3-18
-
-
Dror, G.1
Koenigstein, N.2
Koren, Y.3
Weimer, M.4
-
6
-
-
67049164166
-
Collaborative filtering for implicit feedback datasets
-
Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM, pages 263-272, 2008.
-
(2008)
ICDM
, pp. 263-272
-
-
Hu, Y.1
Koren, Y.2
Volinsky, C.3
-
7
-
-
78649948228
-
Collaborative filtering via euclidean embedding
-
M. Khoshneshin and W. N. Street. Collaborative filtering via euclidean embedding. In RecSys, pages 87-94, 2010.
-
(2010)
RecSys
, pp. 87-94
-
-
Khoshneshin, M.1
Street, W.N.2
-
8
-
-
84887592222
-
Efficient retrieval of recommendations in a matrix factorization framework
-
N. Koenigstein, P. Ram, and Y. Shavitt. Efficient retrieval of recommendations in a matrix factorization framework. In CIKM, 2012.
-
(2012)
CIKM
-
-
Koenigstein, N.1
Ram, P.2
Shavitt, Y.3
-
9
-
-
77955644905
-
Factor in the neighbors: Scalable and accurate collaborative filtering
-
Y. Koren. Factor in the neighbors: Scalable and accurate collaborative filtering. TKDD, 4(1), 2010.
-
(2010)
TKDD
, vol.4
, Issue.1
-
-
Koren, Y.1
-
10
-
-
2942597326
-
Industry report: Amazoncom recommendations: Item-to-item collaborative filtering
-
G. Linden, B. Smith, and J. York. Industry report: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Distributed Systems Online, 4(1), 2003.
-
(2003)
IEEE Distributed Systems Online
, vol.4
, Issue.1
-
-
Linden, G.1
Smith, B.2
York, J.3
-
12
-
-
77954599758
-
Factorizing personalized markov chains for next-basket recommendation
-
S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personalized markov chains for next-basket recommendation. In WWW, pages 811-820, 2010.
-
(2010)
WWW
, pp. 811-820
-
-
Rendle, S.1
Freudenthaler, C.2
Schmidt-Thieme, L.3
-
13
-
-
85052617391
-
Item-based collaborative filtering recommendation algorithms
-
ACM
-
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web, WWW '01, pages 285-295. ACM, 2001.
-
(2001)
Proceedings of the 10th International Conference on World Wide Web, WWW '01
, pp. 285-295
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Riedl, J.4
-
14
-
-
77956208065
-
Training and testing of recommender systems on data missing not at random
-
H. Steck. Training and testing of recommender systems on data missing not at random. In KDD, pages 713-722, 2010.
-
(2010)
KDD
, pp. 713-722
-
-
Steck, H.1
-
15
-
-
0026256261
-
Satisfying general proximity/similarity queries with metric trees
-
J. K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Inf Process. Lett., 40(4):175-179, 1991.
-
(1991)
Inf Process. Lett.
, vol.40
, Issue.4
, pp. 175-179
-
-
Uhlmann, J.K.1
-
16
-
-
33645657113
-
Improving recommendation lists through topic diversification
-
C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists through topic diversification. In Proceedings of the 14th international conference on World Wide Web, WWW '05, pages 22-32, 2005.
-
(2005)
Proceedings of the 14th International Conference on World Wide Web, WWW '05
, pp. 22-32
-
-
Ziegler, C.-N.1
McNee, S.M.2
Konstan, J.A.3
Lausen, G.4
|