메뉴 건너뛰기




Volumn 13, Issue 3, 2017, Pages 963-967

Ward Clustering Improves Cross-Validated Markov State Models of Protein Folding

Author keywords

[No Author keywords available]

Indexed keywords

PROTEIN;

EID: 85015202332     PISSN: 15499618     EISSN: 15499626     Source Type: Journal    
DOI: 10.1021/acs.jctc.6b01238     Document Type: Article
Times cited : (46)

References (44)
  • 1
    • 33646943202 scopus 로고    scopus 로고
    • Molecular Dynamics: Survey of Methods for Simulating the Activity of Proteins
    • Adcock, S. A.; McCammon, J. A. Molecular Dynamics: Survey of Methods for Simulating the Activity of Proteins Chem. Rev. 2006, 106, 1589-1615 10.1021/cr040426m
    • (2006) Chem. Rev. , vol.106 , pp. 1589-1615
    • Adcock, S.A.1    McCammon, J.A.2
  • 2
    • 84861367246 scopus 로고    scopus 로고
    • Biomolecular Simulation: A Computational Microscope for Molecular Biology
    • Dror, R. O.; Dirks, R. M.; Grossman, J.; Xu, H.; Shaw, D. E. Biomolecular Simulation: A Computational Microscope for Molecular Biology Annu. Rev. Biophys. 2012, 41, 429-452 10.1146/annurev-biophys-042910-155245
    • (2012) Annu. Rev. Biophys. , vol.41 , pp. 429-452
    • Dror, R.O.1    Dirks, R.M.2    Grossman, J.3    Xu, H.4    Shaw, D.E.5
  • 3
    • 0000573002 scopus 로고    scopus 로고
    • A Direct Approach to Conformational Dynamics Based on Hybrid Monte Carlo
    • Schütte, C.; Fischer, A.; Huisinga, W.; Deuflhard, P. A Direct Approach to Conformational Dynamics Based on Hybrid Monte Carlo J. Comput. Phys. 1999, 151, 146-168 10.1006/jcph.1999.6231
    • (1999) J. Comput. Phys. , vol.151 , pp. 146-168
    • Schütte, C.1    Fischer, A.2    Huisinga, W.3    Deuflhard, P.4
  • 4
    • 2942567954 scopus 로고    scopus 로고
    • Describing Protein Folding Kinetics by Molecular Dynamics Simulations. 1. Theory
    • Swope, W. C.; Pitera, J. W.; Suits, F. Describing Protein Folding Kinetics by Molecular Dynamics Simulations. 1. Theory J. Phys. Chem. B 2004, 108, 6571-6581 10.1021/jp037421y
    • (2004) J. Phys. Chem. B , vol.108 , pp. 6571-6581
    • Swope, W.C.1    Pitera, J.W.2    Suits, F.3
  • 5
    • 3142707288 scopus 로고    scopus 로고
    • Using path sampling to build better Markovian state models: Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin
    • Singhal, N.; Snow, C. D.; Pande, V. S. Using path sampling to build better Markovian state models: Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin J. Chem. Phys. 2004, 121, 415-425 10.1063/1.1738647
    • (2004) J. Chem. Phys. , vol.121 , pp. 415-425
    • Singhal, N.1    Snow, C.D.2    Pande, V.S.3
  • 6
    • 34247339716 scopus 로고    scopus 로고
    • Hierarchical analysis of conformational dynamics in biomolecules: Transition networks of metastable states
    • Noé, F.; Horenko, I.; Schütte, C.; Smith, J. C. Hierarchical analysis of conformational dynamics in biomolecules: Transition networks of metastable states J. Chem. Phys. 2007, 126, 155102 10.1063/1.2714539
    • (2007) J. Chem. Phys. , vol.126 , pp. 155102
    • Noé, F.1    Horenko, I.2    Schütte, C.3    Smith, J.C.4
  • 7
    • 77956220940 scopus 로고    scopus 로고
    • Everything you wanted to know about Markov State Models but were afraid to ask
    • Pande, V. S.; Beauchamp, K.; Bowman, G. R. Everything you wanted to know about Markov State Models but were afraid to ask Methods 2010, 52, 99-105 10.1016/j.ymeth.2010.06.002
    • (2010) Methods , vol.52 , pp. 99-105
    • Pande, V.S.1    Beauchamp, K.2    Bowman, G.R.3
  • 10
    • 84996548618 scopus 로고    scopus 로고
    • Optimized parameter selection reveals trends in Markov state models for protein folding
    • Husic, B. E.; McGibbon, R. T.; Sultan, M. M.; Pande, V. S. Optimized parameter selection reveals trends in Markov state models for protein folding J. Chem. Phys. 2016, 145, 194103 10.1063/1.4967809
    • (2016) J. Chem. Phys. , vol.145 , pp. 194103
    • Husic, B.E.1    McGibbon, R.T.2    Sultan, M.M.3    Pande, V.S.4
  • 11
    • 84879735744 scopus 로고    scopus 로고
    • A Variational Approach to Modeling Slow Processes in Stochastic Dynamical Systems
    • Noé, F.; Nüske, F. A Variational Approach to Modeling Slow Processes in Stochastic Dynamical Systems Multiscale Model. Simul. 2013, 11, 635-655 10.1137/110858616
    • (2013) Multiscale Model. Simul. , vol.11 , pp. 635-655
    • Noé, F.1    Nüske, F.2
  • 13
    • 84961290952 scopus 로고    scopus 로고
    • Variational cross-validation of slow dynamical modes in molecular kinetics
    • McGibbon, R. T.; Pande, V. S. Variational cross-validation of slow dynamical modes in molecular kinetics J. Chem. Phys. 2015, 142, 124105 10.1063/1.4916292
    • (2015) J. Chem. Phys. , vol.142 , pp. 124105
    • McGibbon, R.T.1    Pande, V.S.2
  • 14
    • 9444222978 scopus 로고
    • The Application of Computers to Taxonomy
    • Sneath, P. H. A. The Application of Computers to Taxonomy Microbiology 1957, 17, 201-226 10.1099/00221287-17-1-201
    • (1957) Microbiology , vol.17 , pp. 201-226
    • Sneath, P.H.A.1
  • 15
    • 0000825481 scopus 로고
    • A statistical method for evaluating systematic relationships
    • Sokal, R. R.; Michener, C. D. A statistical method for evaluating systematic relationships Univ. Kansas Sci. Bull. 1958, 38, 1409-1438
    • (1958) Univ. Kansas Sci. Bull. , vol.38 , pp. 1409-1438
    • Sokal, R.R.1    Michener, C.D.2
  • 16
    • 0002969802 scopus 로고
    • A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons
    • Sorensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons Biol. Skr. 1948, 5, 1-34
    • (1948) Biol. Skr. , vol.5 , pp. 1-34
    • Sorensen, T.1
  • 17
    • 84944178665 scopus 로고
    • Hierarchical Grouping to Optimize an Objective Function
    • Ward, J. H. Hierarchical Grouping to Optimize an Objective Function J. Am. Stat. Assoc. 1963, 58, 236-244 10.1080/01621459.1963.10500845
    • (1963) J. Am. Stat. Assoc. , vol.58 , pp. 236-244
    • Ward, J.H.1
  • 18
    • 0000373016 scopus 로고
    • 256. Note: An Algorithm for Hierarchical Classifications
    • Wishart, D. 256. Note: An Algorithm for Hierarchical Classifications Biometrics 1969, 25, 165-170 10.2307/2528688
    • (1969) Biometrics , vol.25 , pp. 165-170
    • Wishart, D.1
  • 20
    • 84939964000 scopus 로고    scopus 로고
    • Agglomerative Nesting (Program AGNES)
    • John Wiley & Sons: Hoboken, NJ, USA, pp, DOI
    • Kaufman, L.; Rousseeuw, P. J. Agglomerative Nesting (Program AGNES). Finding Groups in Data; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp 199-252, DOI: 10.1002/9780470316801.ch5.
    • (2008) Finding Groups in Data , pp. 199-252
    • Kaufman, L.1    Rousseeuw, P.J.2
  • 21
    • 84868122477 scopus 로고    scopus 로고
    • Simple few-state models reveal hidden complexity in protein folding
    • Beauchamp, K. A.; McGibbon, R.; Lin, Y.-S.; Pande, V. S. Simple few-state models reveal hidden complexity in protein folding Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 17807-17813 10.1073/pnas.1201810109
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 17807-17813
    • Beauchamp, K.A.1    McGibbon, R.2    Lin, Y.-S.3    Pande, V.S.4
  • 22
    • 84964344032 scopus 로고    scopus 로고
    • CUDA-enabled hierarchical ward clustering of protein structures based on the nearest neighbour chain algorithm
    • Dang, H.-V.; Schmidt, B.; Hildebrandt, A.; Tran, T. T.; Hildebrandt, A. K. CUDA-enabled hierarchical ward clustering of protein structures based on the nearest neighbour chain algorithm Int. J. High Perform. C 2016, 30, 200-211 10.1177/1094342015597988
    • (2016) Int. J. High Perform. C , vol.30 , pp. 200-211
    • Dang, H.-V.1    Schmidt, B.2    Hildebrandt, A.3    Tran, T.T.4    Hildebrandt, A.K.5
  • 23
    • 5244364312 scopus 로고    scopus 로고
    • The Information Content of 2D and 3D Structural Descriptors Relevant to Ligand-Receptor Binding
    • Brown, R. D.; Martin, Y. C. The Information Content of 2D and 3D Structural Descriptors Relevant to Ligand-Receptor Binding J. Chem. Inf. Comput. Sci. 1997, 37, 1-9 10.1021/ci960373c
    • (1997) J. Chem. Inf. Comput. Sci. , vol.37 , pp. 1-9
    • Brown, R.D.1    Martin, Y.C.2
  • 24
    • 84941924740 scopus 로고    scopus 로고
    • An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features
    • De Paris, R.; Quevedo, C. V.; Ruiz, D. D. A.; Norberto de Souza, O. An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features PLoS One 2015, 10, e0133172 10.1371/journal.pone.0133172
    • (2015) PLoS One , vol.10 , pp. e0133172
    • De Paris, R.1    Quevedo, C.V.2    Ruiz, D.D.A.3    Norberto De Souza, O.4
  • 25
    • 80555158385 scopus 로고    scopus 로고
    • A supervised clustering approach for fMRI-based inference of brain states
    • Michel, V.; Gramfort, A.; Varoquaux, G.; Eger, E.; Keribin, C.; Thirion, B. A supervised clustering approach for fMRI-based inference of brain states Pattern Recogn. 2012, 45, 2041-2049 10.1016/j.patcog.2011.04.006
    • (2012) Pattern Recogn. , vol.45 , pp. 2041-2049
    • Michel, V.1    Gramfort, A.2    Varoquaux, G.3    Eger, E.4    Keribin, C.5    Thirion, B.6
  • 26
    • 84867118966 scopus 로고    scopus 로고
    • Small-Sample Brain Mapping: Sparse Recovery on Spatially Correlated Designs with Randomization and Clustering
    • Edinburgh, Scotland, GB, Jun. 25-July 1, 2012; Langford, J. Pineau, J. Omnipress: New York, NY, USA
    • Varoquaux, G.; Gramfort, A.; Thirion, B. Small-Sample Brain Mapping: Sparse Recovery on Spatially Correlated Designs with Randomization and Clustering. In Proceedings of the 29th International Conference on Machine Learning, Edinburgh, Scotland, GB, Jun. 25-July 1, 2012; Langford, J.; Pineau, J., Eds.; Omnipress: New York, NY, USA, 2012; pp 1375-1382.
    • (2012) Proceedings of the 29th International Conference on Machine Learning , pp. 1375-1382
    • Varoquaux, G.1    Gramfort, A.2    Thirion, B.3
  • 27
  • 28
    • 0023523514 scopus 로고
    • How many clusters are best? - An experiment
    • Dubes, R. C. How many clusters are best?-An experiment Pattern Recogn. 1987, 20, 645-663 10.1016/0031-3203(87)90034-3
    • (1987) Pattern Recogn. , vol.20 , pp. 645-663
    • Dubes, R.C.1
  • 29
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan, G. W.; Cooper, M. C. An examination of procedures for determining the number of clusters in a data set Psychometrika 1985, 50, 159-179 10.1007/BF02294245
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 31
    • 0003694798 scopus 로고
    • Oxford University Press: New York, NY
    • Kauffman, S. The Origins of Order; Oxford University Press: New York, NY, 1993.
    • (1993) The Origins of Order
    • Kauffman, S.1
  • 32
    • 2942555397 scopus 로고    scopus 로고
    • Training Support Vector Machine using Adaptive Clustering
    • Lake Buena Vista, FL, USA, Apr. 22-24, 2004; Berry, M. W. Dayal, U. Kamath, C. Skillicorn, D. Society for Industrial and Applied Mathematics: Philadelphia, PA, USA
    • Boley, D.; Cao, D. Training Support Vector Machine using Adaptive Clustering. In Proceedings of the 2004 SIAM International Conference on Data Mining, Lake Buena Vista, FL, USA, Apr. 22-24, 2004; Berry, M. W.; Dayal, U.; Kamath, C.; Skillicorn, D., Eds.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2004; pp 126-137, DOI: 10.1137/1.9781611972740.12.
    • (2004) Proceedings of the 2004 SIAM International Conference on Data Mining , pp. 126-137
    • Boley, D.1    Cao, D.2
  • 34
    • 84878460994 scopus 로고    scopus 로고
    • Fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and Python
    • Müllner, D. fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and Python J. Stat. Soft. 2013, 53, 1-18 10.18637/jss.v053.i09
    • (2013) J. Stat. Soft. , vol.53 , pp. 1-18
    • Müllner, D.1
  • 35
    • 70349631761 scopus 로고    scopus 로고
    • Progress and challenges in the automated construction of Markov state models for full protein systems
    • Bowman, G. R.; Beauchamp, K. A.; Boxer, G.; Pande, V. S. Progress and challenges in the automated construction of Markov state models for full protein systems J. Chem. Phys. 2009, 131, 124101 10.1063/1.3216567
    • (2009) J. Chem. Phys. , vol.131 , pp. 124101
    • Bowman, G.R.1    Beauchamp, K.A.2    Boxer, G.3    Pande, V.S.4
  • 36
    • 76149136021 scopus 로고    scopus 로고
    • Molecular Simulation of ab Initio Protein Folding for a Millisecond Folder NTL9(1-39)
    • Voelz, V. A.; Bowman, G. R.; Beauchamp, K.; Pande, V. S. Molecular Simulation of ab Initio Protein Folding for a Millisecond Folder NTL9(1-39) J. Am. Chem. Soc. 2010, 132, 1526-1528 10.1021/ja9090353
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 1526-1528
    • Voelz, V.A.1    Bowman, G.R.2    Beauchamp, K.3    Pande, V.S.4
  • 39
    • 0000302959 scopus 로고
    • Separation of a mixture of independent signals using time delayed correlations
    • Molgedey, L.; Schuster, H. G. Separation of a mixture of independent signals using time delayed correlations Phys. Rev. Lett. 1994, 72, 3634-3637 10.1103/PhysRevLett.72.3634
    • (1994) Phys. Rev. Lett. , vol.72 , pp. 3634-3637
    • Molgedey, L.1    Schuster, H.G.2
  • 40
    • 84876005630 scopus 로고    scopus 로고
    • Improvements in Markov State Model Construction Reveal Many Non-Native Interactions in the Folding of NTL9
    • Schwantes, C. R.; Pande, V. S. Improvements in Markov State Model Construction Reveal Many Non-Native Interactions in the Folding of NTL9 J. Chem. Theory Comput. 2013, 9, 2000-2009 10.1021/ct300878a
    • (2013) J. Chem. Theory Comput. , vol.9 , pp. 2000-2009
    • Schwantes, C.R.1    Pande, V.S.2
  • 41
    • 84886081379 scopus 로고    scopus 로고
    • Identification of slow molecular order parameters for Markov model construction
    • Pérez-Hernández, G.; Paul, F.; Giorgino, T.; de Fabritiis, G.; Noé, F. Identification of slow molecular order parameters for Markov model construction J. Chem. Phys. 2013, 139, 015102 10.1063/1.4811489
    • (2013) J. Chem. Phys. , vol.139 , pp. 015102
    • Pérez-Hernández, G.1    Paul, F.2    Giorgino, T.3    De Fabritiis, G.4    Noé, F.5
  • 43
    • 84944046499 scopus 로고    scopus 로고
    • Kinetic Distance and Kinetic Maps from Molecular Dynamics Simulation
    • Noé, F.; Clementi, C. Kinetic Distance and Kinetic Maps from Molecular Dynamics Simulation J. Chem. Theory Comput. 2015, 11, 5002-5011 10.1021/acs.jctc.5b00553
    • (2015) J. Chem. Theory Comput. , vol.11 , pp. 5002-5011
    • Noé, F.1    Clementi, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.