-
1
-
-
33646943202
-
Molecular Dynamics: Survey of Methods for Simulating the Activity of Proteins
-
Adcock, S. A.; McCammon, J. A. Molecular Dynamics: Survey of Methods for Simulating the Activity of Proteins Chem. Rev. 2006, 106, 1589-1615 10.1021/cr040426m
-
(2006)
Chem. Rev.
, vol.106
, pp. 1589-1615
-
-
Adcock, S.A.1
McCammon, J.A.2
-
2
-
-
84861367246
-
Biomolecular Simulation: A Computational Microscope for Molecular Biology
-
Dror, R. O.; Dirks, R. M.; Grossman, J.; Xu, H.; Shaw, D. E. Biomolecular Simulation: A Computational Microscope for Molecular Biology Annu. Rev. Biophys. 2012, 41, 429-452 10.1146/annurev-biophys-042910-155245
-
(2012)
Annu. Rev. Biophys.
, vol.41
, pp. 429-452
-
-
Dror, R.O.1
Dirks, R.M.2
Grossman, J.3
Xu, H.4
Shaw, D.E.5
-
3
-
-
0000573002
-
A Direct Approach to Conformational Dynamics Based on Hybrid Monte Carlo
-
Schütte, C.; Fischer, A.; Huisinga, W.; Deuflhard, P. A Direct Approach to Conformational Dynamics Based on Hybrid Monte Carlo J. Comput. Phys. 1999, 151, 146-168 10.1006/jcph.1999.6231
-
(1999)
J. Comput. Phys.
, vol.151
, pp. 146-168
-
-
Schütte, C.1
Fischer, A.2
Huisinga, W.3
Deuflhard, P.4
-
4
-
-
2942567954
-
Describing Protein Folding Kinetics by Molecular Dynamics Simulations. 1. Theory
-
Swope, W. C.; Pitera, J. W.; Suits, F. Describing Protein Folding Kinetics by Molecular Dynamics Simulations. 1. Theory J. Phys. Chem. B 2004, 108, 6571-6581 10.1021/jp037421y
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 6571-6581
-
-
Swope, W.C.1
Pitera, J.W.2
Suits, F.3
-
5
-
-
3142707288
-
Using path sampling to build better Markovian state models: Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin
-
Singhal, N.; Snow, C. D.; Pande, V. S. Using path sampling to build better Markovian state models: Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin J. Chem. Phys. 2004, 121, 415-425 10.1063/1.1738647
-
(2004)
J. Chem. Phys.
, vol.121
, pp. 415-425
-
-
Singhal, N.1
Snow, C.D.2
Pande, V.S.3
-
6
-
-
34247339716
-
Hierarchical analysis of conformational dynamics in biomolecules: Transition networks of metastable states
-
Noé, F.; Horenko, I.; Schütte, C.; Smith, J. C. Hierarchical analysis of conformational dynamics in biomolecules: Transition networks of metastable states J. Chem. Phys. 2007, 126, 155102 10.1063/1.2714539
-
(2007)
J. Chem. Phys.
, vol.126
, pp. 155102
-
-
Noé, F.1
Horenko, I.2
Schütte, C.3
Smith, J.C.4
-
7
-
-
77956220940
-
Everything you wanted to know about Markov State Models but were afraid to ask
-
Pande, V. S.; Beauchamp, K.; Bowman, G. R. Everything you wanted to know about Markov State Models but were afraid to ask Methods 2010, 52, 99-105 10.1016/j.ymeth.2010.06.002
-
(2010)
Methods
, vol.52
, pp. 99-105
-
-
Pande, V.S.1
Beauchamp, K.2
Bowman, G.R.3
-
8
-
-
79957488000
-
Markov models of molecular kinetics: Generation and validation
-
Prinz, J.-H.; Wu, H.; Sarich, M.; Keller, B.; Senne, M.; Held, M.; Chodera, J. D.; Schütte, C.; Noé, F. Markov models of molecular kinetics: Generation and validation J. Chem. Phys. 2011, 134, 174105 10.1063/1.3565032
-
(2011)
J. Chem. Phys.
, vol.134
, pp. 174105
-
-
Prinz, J.-H.1
Wu, H.2
Sarich, M.3
Keller, B.4
Senne, M.5
Held, M.6
Chodera, J.D.7
Schütte, C.8
Noé, F.9
-
9
-
-
85008895438
-
MSMBuilder: Statistical Models for Biomolecular Dynamics
-
Harrigan, M. P.; Sultan, M. M.; Hernández, C. X.; Husic, B. E.; Eastman, P.; Schwantes, C. R.; Beauchamp, K. A.; McGibbon, R. T.; Pande, V. S. MSMBuilder: Statistical Models for Biomolecular Dynamics Biophys. J. 2017, 112, 10-15 10.1016/j.bpj.2016.10.042
-
(2017)
Biophys. J.
, vol.112
, pp. 10-15
-
-
Harrigan, M.P.1
Sultan, M.M.2
Hernández, C.X.3
Husic, B.E.4
Eastman, P.5
Schwantes, C.R.6
Beauchamp, K.A.7
McGibbon, R.T.8
Pande, V.S.9
-
10
-
-
84996548618
-
Optimized parameter selection reveals trends in Markov state models for protein folding
-
Husic, B. E.; McGibbon, R. T.; Sultan, M. M.; Pande, V. S. Optimized parameter selection reveals trends in Markov state models for protein folding J. Chem. Phys. 2016, 145, 194103 10.1063/1.4967809
-
(2016)
J. Chem. Phys.
, vol.145
, pp. 194103
-
-
Husic, B.E.1
McGibbon, R.T.2
Sultan, M.M.3
Pande, V.S.4
-
11
-
-
84879735744
-
A Variational Approach to Modeling Slow Processes in Stochastic Dynamical Systems
-
Noé, F.; Nüske, F. A Variational Approach to Modeling Slow Processes in Stochastic Dynamical Systems Multiscale Model. Simul. 2013, 11, 635-655 10.1137/110858616
-
(2013)
Multiscale Model. Simul.
, vol.11
, pp. 635-655
-
-
Noé, F.1
Nüske, F.2
-
12
-
-
84898431921
-
Variational Approach to Molecular Kinetics
-
Nüske, F.; Keller, B. G.; Pérez-Hernández, G.; Mey, A. S. J. S.; Noé, F. Variational Approach to Molecular Kinetics J. Chem. Theory Comput. 2014, 10, 1739-1752 10.1021/ct4009156
-
(2014)
J. Chem. Theory Comput.
, vol.10
, pp. 1739-1752
-
-
Nüske, F.1
Keller, B.G.2
Pérez-Hernández, G.3
Mey, A.S.J.S.4
Noé, F.5
-
13
-
-
84961290952
-
Variational cross-validation of slow dynamical modes in molecular kinetics
-
McGibbon, R. T.; Pande, V. S. Variational cross-validation of slow dynamical modes in molecular kinetics J. Chem. Phys. 2015, 142, 124105 10.1063/1.4916292
-
(2015)
J. Chem. Phys.
, vol.142
, pp. 124105
-
-
McGibbon, R.T.1
Pande, V.S.2
-
14
-
-
9444222978
-
The Application of Computers to Taxonomy
-
Sneath, P. H. A. The Application of Computers to Taxonomy Microbiology 1957, 17, 201-226 10.1099/00221287-17-1-201
-
(1957)
Microbiology
, vol.17
, pp. 201-226
-
-
Sneath, P.H.A.1
-
15
-
-
0000825481
-
A statistical method for evaluating systematic relationships
-
Sokal, R. R.; Michener, C. D. A statistical method for evaluating systematic relationships Univ. Kansas Sci. Bull. 1958, 38, 1409-1438
-
(1958)
Univ. Kansas Sci. Bull.
, vol.38
, pp. 1409-1438
-
-
Sokal, R.R.1
Michener, C.D.2
-
16
-
-
0002969802
-
A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons
-
Sorensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons Biol. Skr. 1948, 5, 1-34
-
(1948)
Biol. Skr.
, vol.5
, pp. 1-34
-
-
Sorensen, T.1
-
17
-
-
84944178665
-
Hierarchical Grouping to Optimize an Objective Function
-
Ward, J. H. Hierarchical Grouping to Optimize an Objective Function J. Am. Stat. Assoc. 1963, 58, 236-244 10.1080/01621459.1963.10500845
-
(1963)
J. Am. Stat. Assoc.
, vol.58
, pp. 236-244
-
-
Ward, J.H.1
-
18
-
-
0000373016
-
256. Note: An Algorithm for Hierarchical Classifications
-
Wishart, D. 256. Note: An Algorithm for Hierarchical Classifications Biometrics 1969, 25, 165-170 10.2307/2528688
-
(1969)
Biometrics
, vol.25
, pp. 165-170
-
-
Wishart, D.1
-
19
-
-
3543131400
-
-
Sydney, Australia, Jul. 8-12, 2002; Sammut, C. Hoffmann, A. G. Morgan Kaufmann: San Francisco, CA, USA
-
Kamvar, S. D.; Klein, D.; Manning, C. D. In Proceedings of the Nineteenth International Conference on Machine Learning, Sydney, Australia, Jul. 8-12, 2002; Sammut, C.; Hoffmann, A. G., Eds.; Morgan Kaufmann: San Francisco, CA, USA, 2002; pp 283-290.
-
(2002)
Proceedings of the Nineteenth International Conference on Machine Learning
, pp. 283-290
-
-
Kamvar, S.D.1
Klein, D.2
Manning, C.D.3
-
20
-
-
84939964000
-
Agglomerative Nesting (Program AGNES)
-
John Wiley & Sons: Hoboken, NJ, USA, pp, DOI
-
Kaufman, L.; Rousseeuw, P. J. Agglomerative Nesting (Program AGNES). Finding Groups in Data; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp 199-252, DOI: 10.1002/9780470316801.ch5.
-
(2008)
Finding Groups in Data
, pp. 199-252
-
-
Kaufman, L.1
Rousseeuw, P.J.2
-
21
-
-
84868122477
-
Simple few-state models reveal hidden complexity in protein folding
-
Beauchamp, K. A.; McGibbon, R.; Lin, Y.-S.; Pande, V. S. Simple few-state models reveal hidden complexity in protein folding Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 17807-17813 10.1073/pnas.1201810109
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 17807-17813
-
-
Beauchamp, K.A.1
McGibbon, R.2
Lin, Y.-S.3
Pande, V.S.4
-
22
-
-
84964344032
-
CUDA-enabled hierarchical ward clustering of protein structures based on the nearest neighbour chain algorithm
-
Dang, H.-V.; Schmidt, B.; Hildebrandt, A.; Tran, T. T.; Hildebrandt, A. K. CUDA-enabled hierarchical ward clustering of protein structures based on the nearest neighbour chain algorithm Int. J. High Perform. C 2016, 30, 200-211 10.1177/1094342015597988
-
(2016)
Int. J. High Perform. C
, vol.30
, pp. 200-211
-
-
Dang, H.-V.1
Schmidt, B.2
Hildebrandt, A.3
Tran, T.T.4
Hildebrandt, A.K.5
-
23
-
-
5244364312
-
The Information Content of 2D and 3D Structural Descriptors Relevant to Ligand-Receptor Binding
-
Brown, R. D.; Martin, Y. C. The Information Content of 2D and 3D Structural Descriptors Relevant to Ligand-Receptor Binding J. Chem. Inf. Comput. Sci. 1997, 37, 1-9 10.1021/ci960373c
-
(1997)
J. Chem. Inf. Comput. Sci.
, vol.37
, pp. 1-9
-
-
Brown, R.D.1
Martin, Y.C.2
-
24
-
-
84941924740
-
An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features
-
De Paris, R.; Quevedo, C. V.; Ruiz, D. D. A.; Norberto de Souza, O. An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features PLoS One 2015, 10, e0133172 10.1371/journal.pone.0133172
-
(2015)
PLoS One
, vol.10
, pp. e0133172
-
-
De Paris, R.1
Quevedo, C.V.2
Ruiz, D.D.A.3
Norberto De Souza, O.4
-
25
-
-
80555158385
-
A supervised clustering approach for fMRI-based inference of brain states
-
Michel, V.; Gramfort, A.; Varoquaux, G.; Eger, E.; Keribin, C.; Thirion, B. A supervised clustering approach for fMRI-based inference of brain states Pattern Recogn. 2012, 45, 2041-2049 10.1016/j.patcog.2011.04.006
-
(2012)
Pattern Recogn.
, vol.45
, pp. 2041-2049
-
-
Michel, V.1
Gramfort, A.2
Varoquaux, G.3
Eger, E.4
Keribin, C.5
Thirion, B.6
-
26
-
-
84867118966
-
Small-Sample Brain Mapping: Sparse Recovery on Spatially Correlated Designs with Randomization and Clustering
-
Edinburgh, Scotland, GB, Jun. 25-July 1, 2012; Langford, J. Pineau, J. Omnipress: New York, NY, USA
-
Varoquaux, G.; Gramfort, A.; Thirion, B. Small-Sample Brain Mapping: Sparse Recovery on Spatially Correlated Designs with Randomization and Clustering. In Proceedings of the 29th International Conference on Machine Learning, Edinburgh, Scotland, GB, Jun. 25-July 1, 2012; Langford, J.; Pineau, J., Eds.; Omnipress: New York, NY, USA, 2012; pp 1375-1382.
-
(2012)
Proceedings of the 29th International Conference on Machine Learning
, pp. 1375-1382
-
-
Varoquaux, G.1
Gramfort, A.2
Thirion, B.3
-
27
-
-
84905988125
-
Which fMRI clustering gives good brain parcellations?
-
Thirion, B.; Varoquaux, G.; Dohmatob, E.; Poline, J.-B. Which fMRI clustering gives good brain parcellations? Front. Neurosci. 2014, 8, 167 10.3389/fnins.2014.00167
-
(2014)
Front. Neurosci.
, vol.8
, pp. 167
-
-
Thirion, B.1
Varoquaux, G.2
Dohmatob, E.3
Poline, J.-B.4
-
28
-
-
0023523514
-
How many clusters are best? - An experiment
-
Dubes, R. C. How many clusters are best?-An experiment Pattern Recogn. 1987, 20, 645-663 10.1016/0031-3203(87)90034-3
-
(1987)
Pattern Recogn.
, vol.20
, pp. 645-663
-
-
Dubes, R.C.1
-
29
-
-
34250115918
-
An examination of procedures for determining the number of clusters in a data set
-
Milligan, G. W.; Cooper, M. C. An examination of procedures for determining the number of clusters in a data set Psychometrika 1985, 50, 159-179 10.1007/BF02294245
-
(1985)
Psychometrika
, vol.50
, pp. 159-179
-
-
Milligan, G.W.1
Cooper, M.C.2
-
31
-
-
0003694798
-
-
Oxford University Press: New York, NY
-
Kauffman, S. The Origins of Order; Oxford University Press: New York, NY, 1993.
-
(1993)
The Origins of Order
-
-
Kauffman, S.1
-
32
-
-
2942555397
-
Training Support Vector Machine using Adaptive Clustering
-
Lake Buena Vista, FL, USA, Apr. 22-24, 2004; Berry, M. W. Dayal, U. Kamath, C. Skillicorn, D. Society for Industrial and Applied Mathematics: Philadelphia, PA, USA
-
Boley, D.; Cao, D. Training Support Vector Machine using Adaptive Clustering. In Proceedings of the 2004 SIAM International Conference on Data Mining, Lake Buena Vista, FL, USA, Apr. 22-24, 2004; Berry, M. W.; Dayal, U.; Kamath, C.; Skillicorn, D., Eds.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2004; pp 126-137, DOI: 10.1137/1.9781611972740.12.
-
(2004)
Proceedings of the 2004 SIAM International Conference on Data Mining
, pp. 126-137
-
-
Boley, D.1
Cao, D.2
-
34
-
-
84878460994
-
Fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and Python
-
Müllner, D. fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and Python J. Stat. Soft. 2013, 53, 1-18 10.18637/jss.v053.i09
-
(2013)
J. Stat. Soft.
, vol.53
, pp. 1-18
-
-
Müllner, D.1
-
35
-
-
70349631761
-
Progress and challenges in the automated construction of Markov state models for full protein systems
-
Bowman, G. R.; Beauchamp, K. A.; Boxer, G.; Pande, V. S. Progress and challenges in the automated construction of Markov state models for full protein systems J. Chem. Phys. 2009, 131, 124101 10.1063/1.3216567
-
(2009)
J. Chem. Phys.
, vol.131
, pp. 124101
-
-
Bowman, G.R.1
Beauchamp, K.A.2
Boxer, G.3
Pande, V.S.4
-
36
-
-
76149136021
-
Molecular Simulation of ab Initio Protein Folding for a Millisecond Folder NTL9(1-39)
-
Voelz, V. A.; Bowman, G. R.; Beauchamp, K.; Pande, V. S. Molecular Simulation of ab Initio Protein Folding for a Millisecond Folder NTL9(1-39) J. Am. Chem. Soc. 2010, 132, 1526-1528 10.1021/ja9090353
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 1526-1528
-
-
Voelz, V.A.1
Bowman, G.R.2
Beauchamp, K.3
Pande, V.S.4
-
37
-
-
80053979296
-
MSMBuilder2: Modeling Conformational Dynamics on the Picosecond to Millisecond Scale
-
Beauchamp, K. A.; Bowman, G. R.; Lane, T. J.; Maibaum, L.; Haque, I. S.; Pande, V. S. MSMBuilder2: Modeling Conformational Dynamics on the Picosecond to Millisecond Scale J. Chem. Theory Comput. 2011, 7, 3412-3419 10.1021/ct200463m
-
(2011)
J. Chem. Theory Comput.
, vol.7
, pp. 3412-3419
-
-
Beauchamp, K.A.1
Bowman, G.R.2
Lane, T.J.3
Maibaum, L.4
Haque, I.S.5
Pande, V.S.6
-
38
-
-
80055081145
-
How Fast-Folding Proteins Fold
-
Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. How Fast-Folding Proteins Fold Science 2011, 334, 517-520 10.1126/science.1208351
-
(2011)
Science
, vol.334
, pp. 517-520
-
-
Lindorff-Larsen, K.1
Piana, S.2
Dror, R.O.3
Shaw, D.E.4
-
39
-
-
0000302959
-
Separation of a mixture of independent signals using time delayed correlations
-
Molgedey, L.; Schuster, H. G. Separation of a mixture of independent signals using time delayed correlations Phys. Rev. Lett. 1994, 72, 3634-3637 10.1103/PhysRevLett.72.3634
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 3634-3637
-
-
Molgedey, L.1
Schuster, H.G.2
-
40
-
-
84876005630
-
Improvements in Markov State Model Construction Reveal Many Non-Native Interactions in the Folding of NTL9
-
Schwantes, C. R.; Pande, V. S. Improvements in Markov State Model Construction Reveal Many Non-Native Interactions in the Folding of NTL9 J. Chem. Theory Comput. 2013, 9, 2000-2009 10.1021/ct300878a
-
(2013)
J. Chem. Theory Comput.
, vol.9
, pp. 2000-2009
-
-
Schwantes, C.R.1
Pande, V.S.2
-
41
-
-
84886081379
-
Identification of slow molecular order parameters for Markov model construction
-
Pérez-Hernández, G.; Paul, F.; Giorgino, T.; de Fabritiis, G.; Noé, F. Identification of slow molecular order parameters for Markov model construction J. Chem. Phys. 2013, 139, 015102 10.1063/1.4811489
-
(2013)
J. Chem. Phys.
, vol.139
, pp. 015102
-
-
Pérez-Hernández, G.1
Paul, F.2
Giorgino, T.3
De Fabritiis, G.4
Noé, F.5
-
42
-
-
46249090563
-
Anton, a Special-Purpose Machine for Molecular Dynamics Simulation
-
Shaw, D. E.; Deneroff, M. M.; Dror, R. O.; Kuskin, J. S.; Larson, R. H.; Salmon, J. K.; Young, C.; Batson, B.; Bowers, K. J.; Chao, J. C.; Eastwood, M. P.; Gagliardo, J.; Grossman, J. P.; Ho, C. R.; Ierardi, D. J.; Kolossváry, I.; Klepeis, J. L.; Layman, T.; McLeavey, C.; Moraes, M. A.; Mueller, R.; Priest, E. C.; Shan, Y.; Spengler, J.; Theobald, M.; Towles, B.; Wang, S. C. Anton, a Special-Purpose Machine for Molecular Dynamics Simulation Commun. ACM 2008, 51, 91-97 10.1145/1364782.1364802
-
(2008)
Commun. ACM
, vol.51
, pp. 91-97
-
-
Shaw, D.E.1
Deneroff, M.M.2
Dror, R.O.3
Kuskin, J.S.4
Larson, R.H.5
Salmon, J.K.6
Young, C.7
Batson, B.8
Bowers, K.J.9
Chao, J.C.10
Eastwood, M.P.11
Gagliardo, J.12
Grossman, J.P.13
Ho, C.R.14
Ierardi, D.J.15
Kolossváry, I.16
Klepeis, J.L.17
Layman, T.18
McLeavey, C.19
Moraes, M.A.20
Mueller, R.21
Priest, E.C.22
Shan, Y.23
Spengler, J.24
Theobald, M.25
Towles, B.26
Wang, S.C.27
more..
-
43
-
-
84944046499
-
Kinetic Distance and Kinetic Maps from Molecular Dynamics Simulation
-
Noé, F.; Clementi, C. Kinetic Distance and Kinetic Maps from Molecular Dynamics Simulation J. Chem. Theory Comput. 2015, 11, 5002-5011 10.1021/acs.jctc.5b00553
-
(2015)
J. Chem. Theory Comput.
, vol.11
, pp. 5002-5011
-
-
Noé, F.1
Clementi, C.2
-
44
-
-
85029535706
-
Osprey: Hyperparameter Optimization for Machine Learning
-
McGibbon, R. T.; Hernández, C. X.; Harrigan, M. P.; Kearnes, S.; Sultan, M. M.; Jastrzebski, S.; Husic, B. E.; Pande, V. S. Osprey: Hyperparameter Optimization for Machine Learning J. Open Source Software 2016, 1, 00034 10.21105/joss.00034
-
(2016)
J. Open Source Software
, vol.1
, pp. 00034
-
-
McGibbon, R.T.1
Hernández, C.X.2
Harrigan, M.P.3
Kearnes, S.4
Sultan, M.M.5
Jastrzebski, S.6
Husic, B.E.7
Pande, V.S.8
|