-
1
-
-
0032573499
-
-
G. A. Prinz, Science 282, 1660 (1998).
-
(1998)
Science
, vol.282
, pp. 1660
-
-
Prinz, G.A.1
-
2
-
-
0035900398
-
-
S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
-
(2001)
Science
, vol.294
, pp. 1488
-
-
Wolf, S.A.1
Awschalom, D.D.2
Buhrman, R.A.3
Daughton, J.M.4
von Molnár, S.5
Roukes, M.L.6
Chtchelkanova, A.Y.7
Treger, D.M.8
-
5
-
-
0035859045
-
-
I. Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom, Nature (London) 411, 770 (2001).
-
(2001)
Nature (London)
, vol.411
, pp. 770
-
-
Malajovich, I.1
Berry, J.J.2
Samarth, N.3
Awschalom, D.D.4
-
6
-
-
0033576696
-
-
R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature (London) 402, 787 (1999).
-
(1999)
Nature (London)
, vol.402
, pp. 787
-
-
Fiederling, R.1
Keim, M.2
Reuscher, G.3
Ossau, W.4
Schmidt, G.5
Waag, A.6
Molenkamp, L.W.7
-
7
-
-
0033576573
-
-
Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature (London) 402, 790 (1999).
-
(1999)
Nature (London)
, vol.402
, pp. 790
-
-
Ohno, Y.1
Young, D.K.2
Beschoten, B.3
Matsukura, F.4
Ohno, H.5
Awschalom, D.D.6
-
8
-
-
39249085058
-
-
G. Schmidt, G. Richter, P. Grabs, C. Gould, D. Ferrand, and L. W. Molenkamp, Phys. Rev. Lett. 87, 227203 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 227203
-
-
Schmidt, G.1
Richter, G.2
Grabs, P.3
Gould, C.4
Ferrand, D.5
Molenkamp, L.W.6
-
9
-
-
0001620222
-
-
P. R. Hammar, B. R. Bennett, M. J. Yang, and M. Johnson, Phys. Rev. Lett. 83, 203 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 203
-
-
Hammar, P.R.1
Bennett, B.R.2
Yang, M.J.3
Johnson, M.4
-
11
-
-
0000227369
-
-
S. Gardelis, C. G. Smith, C. H. W. Barnes, E. H. Linfield, and D. A. Ritchie, Phys. Rev. B 60, 7764 (1999).
-
(1999)
Phys. Rev. B
, vol.60
, pp. 7764
-
-
Gardelis, S.1
Smith, C.G.2
Barnes, C.H.W.3
Linfield, E.H.4
Ritchie, D.A.5
-
12
-
-
0034667056
-
-
A. T. Filip, B. H. Hoving, F. J. Jedema, B. J. van Wees, B. Dutta, and S. Borghs, Phys. Rev. B 62, 9996 (2000).
-
(2000)
Phys. Rev. B
, vol.62
, pp. 9996
-
-
Filip, A.T.1
Hoving, B.H.2
Jedema, F.J.3
van Wees, B.J.4
Dutta, B.5
Borghs, S.6
-
13
-
-
0035947250
-
-
V. P. LaBella, B. W. Bullock, Z. Ding, C. Emery, A. Venkatesan, W. F. Oliver, G. J. Salamo, P. M. Thibado, and M. Mortazavi, Science 292, 1518 (2001).
-
(2001)
Science
, vol.292
, pp. 1518
-
-
LaBella, V.P.1
Bullock, B.W.2
Ding, Z.3
Emery, C.4
Venkatesan, A.5
Oliver, W.F.6
Salamo, G.J.7
Thibado, P.M.8
Mortazavi, M.9
-
14
-
-
26144436805
-
-
H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H.-P. Schönherr, and K. H. Ploog, Phys. Rev. Lett. 87, 016601 (2001);
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 16601
-
-
Zhu, H.J.1
Ramsteiner, M.2
Kostial, H.3
Wassermeier, M.4
Schönherr, H.-P.5
Ploog, K.H.6
-
16
-
-
79956059593
-
-
Appl. Phys. Lett.A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, 80, 1240 (2002).
-
(2002)
Appl. Phys. Lett.
, vol.80
, pp. 1240
-
-
Hanbicki, A.T.1
Jonker, B.T.2
Itskos, G.3
Kioseoglou, G.4
Petrou, A.5
-
17
-
-
0001523105
-
-
H. X. Tang, F. G. Monzon, R. Lifshitz, M. C. Cross, and M. L. Roukes, Phys. Rev. B 61, 4437 (2000).
-
(2000)
Phys. Rev. B
, vol.61
, pp. 4437
-
-
Tang, H.X.1
Monzon, F.G.2
Lifshitz, R.3
Cross, M.C.4
Roukes, M.L.5
-
20
-
-
0036143545
-
-
Phys. Rev. BR. Vlutters, O. M. J. van ‘t Erve, R. Jansen, S. D. Kim, J. C. Lodder, A. Vedyayev, and B. Dieny, 65, 024416 (2001).
-
(2001)
Phys. Rev. B
, vol.65
, pp. 24416
-
-
Vlutters, R.1
van T’Erve, O.M.J.2
Jansen, R.3
Kim, S.D.4
Lodder, J.C.5
Vedyayev, A.6
Dieny, B.7
-
21
-
-
0009906761
-
-
G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. B 62, R4790 (2000).
-
(2000)
Phys. Rev. B
, vol.62
, pp. R4790
-
-
Schmidt, G.1
Ferrand, D.2
Molenkamp, L.W.3
Filip, A.T.4
van Wees, B.J.5
-
26
-
-
0001396365
-
-
H. B. Heersche, Th. Schäpers, J. Nitta, and H. Takaynagi, Phys. Rev. B 64, 161307(R) (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 161307
-
-
Heersche, H.B.1
Schäpers, T.2
Nitta, J.3
Takaynagi, H.4
-
28
-
-
0037098525
-
-
O. Wunnicke, Ph. Mavropoulos, R. Zeller, P. H. Dederichs, and D. Grundler, Phys. Rev. B 65, 241306(R) (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 241306
-
-
Wunnicke, O.1
Mavropoulos, P.2
Zeller, R.3
Dederichs, P.H.4
Grundler, D.5
-
29
-
-
0000735882
-
-
J. M. MacLaren, X.-G. Zhang, W. H. Butler, and X. Wang, Phys. Rev. B 59, 5470 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 5470
-
-
MacLaren, J.M.1
Zhang, X.-G.2
Butler, W.H.3
Wang, X.4
-
31
-
-
0000745829
-
-
R. Zeller, P. H. Dederichs, B. Újfalussy, L. Szunyogh, and P. Weinberger, Phys. Rev. B 52, 8807 (1995).
-
(1995)
Phys. Rev. B
, vol.52
, pp. 8807
-
-
Zeller, R.1
Dederichs, P.H.2
Újfalussy, B.3
Szunyogh, L.4
Weinberger, P.5
-
42
-
-
0003758310
-
-
See, e.g, 3rd ed. (McGraw-Hill, New York
-
See, e.g., L. I. Schiff, Quantum Mechanics, 3rd ed. (McGraw-Hill, New York, 1968), pp. 101-105.
-
(1968)
Quantum Mechanics
, pp. 101-105
-
-
Schiff, L.I.1
-
43
-
-
85038304241
-
-
Similar interference resonances in (formula presented) have been observed in calculations of tunneling junctions (Ref. 38), for transmission through those evanescent states that also have a nonzero real (formula presented) Of course, there the transmission probability is always many orders of magnitude smaller than one
-
Similar interference resonances in (formula presented) have been observed in calculations of tunneling junctions (Ref. 38), for transmission through those evanescent states that also have a nonzero real (formula presented) Of course, there the transmission probability is always many orders of magnitude smaller than one.
-
-
-
-
44
-
-
0035133371
-
-
W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, Phys. Rev. B 63, 054416 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 54416
-
-
Butler, W.H.1
Zhang, X.-G.2
Schulthess, T.C.3
MacLaren, J.M.4
-
45
-
-
85038310893
-
-
Recent theoretical papers (Refs. 4041) based on model calculations have suggested that a modulation of the current polarization due to interference by variation of (formula presented) is possible. Our arguments deny this possibility for the systems considered here, but surely not for all systems. Note that Refs. 40 and 41 refer to systems of lower dimensionality (2D or 1D), where the averaging over (formula presented) has a lesser effect (or is nonexistent, in 1D). Also, the aforementioned modulation would be perhaps possible also in 3D if the minority-spin reflectance of the interface were lower
-
Recent theoretical papers (Refs. 4041) based on model calculations have suggested that a modulation of the current polarization due to interference by variation of (formula presented) is possible. Our arguments deny this possibility for the systems considered here, but surely not for all systems. Note that Refs. 40 and 41 refer to systems of lower dimensionality (2D or 1D), where the averaging over (formula presented) has a lesser effect (or is nonexistent, in 1D). Also, the aforementioned modulation would be perhaps possible also in 3D if the minority-spin reflectance of the interface were lower.
-
-
-
-
47
-
-
0035883570
-
-
Th. Schäpers, J. Nitta, H. B. Heersche, and H. Takayanagi, Phys. Rev. B 64, 125314 (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 125314
-
-
Schäpers, T.1
Nitta, J.2
Heersche, H.B.3
Takayanagi, H.4
-
48
-
-
85038308764
-
-
The situation is analogous to the one-dimensional case of a free electron of wave number (formula presented) encountering an infinitely long step barrier of height (formula presented) where the wave number is (formula presented). The transmition probability there is (formula presented) going to zero as (formula presented) for small (formula presented) The point is that the group velocity in the barrier region goes to zero, although the transmission amplitude t remains finite, so current conservation forces (formula presented) also go to zero. The same point is true in our case when we approach the conduction-band edge (Ref. 24) and thus the analogy is valid
-
The situation is analogous to the one-dimensional case of a free electron of wave number (formula presented) encountering an infinitely long step barrier of height (formula presented) where the wave number is (formula presented). The transmition probability there is (formula presented) going to zero as (formula presented) for small (formula presented) The point is that the group velocity in the barrier region goes to zero, although the transmission amplitude t remains finite, so current conservation forces (formula presented) also go to zero. The same point is true in our case when we approach the conduction-band edge (Ref. 24) and thus the analogy is valid.
-
-
-
-
49
-
-
85038304415
-
-
This applies also for the (formula presented) dependence of g: one sees the multiresonant form of Fig. 22 if one substitutes the value for (formula presented) taken from the single interface calculation into Eq. (12), and takes for the other (formula presented)‘s (formula presented) in such an approximation, of course, any anisotropy of (formula presented) is lost
-
This applies also for the (formula presented) dependence of g: one sees the multiresonant form of Fig. 22 if one substitutes the value for (formula presented) taken from the single interface calculation into Eq. (12), and takes for the other (formula presented)‘s (formula presented) in such an approximation, of course, any anisotropy of (formula presented) is lost.
-
-
-
-
50
-
-
85038266902
-
-
This small imaginary part (formula presented), in principle infinitesimal, can also be viewed as imposing an attenuation (formula presented) on the waves crossing a spacer of thickness D. Its effect can be studied by replacing (formula presented) and (formula presented) in Eq. (10). It turns out that the resonance maxima are then reduced for larger thicknesses, and that the reduction is stronger for smaller (formula presented) Thus the minority-spin conduction maxima are much more affected
-
This small imaginary part (formula presented), in principle infinitesimal, can also be viewed as imposing an attenuation (formula presented) on the waves crossing a spacer of thickness D. Its effect can be studied by replacing (formula presented) and (formula presented) in Eq. (10). It turns out that the resonance maxima are then reduced for larger thicknesses, and that the reduction is stronger for smaller (formula presented) Thus the minority-spin conduction maxima are much more affected.
-
-
-
-
52
-
-
85038344759
-
-
Actually, the maxima in the DOS do not always have to coincide with those in the transmission; a relative phase shift can occur, as pointed out in Ref. 47. However, such a shift is not expected in the present case if we follow the analysis of Ref. 47, since there are no zeros of the transmission
-
Actually, the maxima in the DOS do not always have to coincide with those in the transmission; a relative phase shift can occur, as pointed out in Ref. 47. However, such a shift is not expected in the present case if we follow the analysis of Ref. 47, since there are no zeros of the transmission.
-
-
-
-
54
-
-
85038291956
-
-
The situation bears again an analogy with the magnetic tunnel junctions; in the limit of large spacer thickness, the current polarization and MR ratio do not reach 100% for ZnSe (Ref. 25), but they do reach it for MgO (Refs. 3849)
-
The situation bears again an analogy with the magnetic tunnel junctions; in the limit of large spacer thickness, the current polarization and MR ratio do not reach 100% for ZnSe (Ref. 25), but they do reach it for MgO (Refs. 3849).
-
-
-
-
56
-
-
85038277325
-
-
unpublished
-
M. Zwierzycki, K. Xia, P. J. Kelly, G. E. W. Bauer, and I. Turek, (unpublished).
-
-
-
Zwierzycki, M.1
Xia, K.2
Kelly, P.J.3
Bauer, G.E.W.4
Turek, I.5
-
57
-
-
0037089277
-
-
T. Matsuyama, C.-M. Hu, D. Grundler, G. Meier, and U. Merkt, Phys. Rev. B 65, 155322 (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 155322
-
-
Matsuyama, T.1
Hu, C.-M.2
Grundler, D.3
Meier, G.4
Merkt, U.5
-
58
-
-
79956028713
-
-
S. Kreuzer, J. Moser, W. Wegscheider, D. Weiss, M. Bichler, and D. Schuh, Appl. Phys. Lett. 80, 4582 (2002).
-
(2002)
Appl. Phys. Lett.
, vol.80
, pp. 4582
-
-
Kreuzer, S.1
Moser, J.2
Wegscheider, W.3
Weiss, D.4
Bichler, M.5
Schuh, D.6
|