-
1
-
-
0034597776
-
-
H. Bracht, S. P. Nicols, W. Walukiewicz, J. P. Silveira, F. Briones, and E. E. Haller, Nature (London) 408, 69 (2000).
-
(2000)
Nature (London)
, vol.408
, pp. 69
-
-
Bracht, H.1
Nicols, S.P.2
Walukiewicz, W.3
Silveira, J.P.4
Briones, F.5
Haller, E.E.6
-
2
-
-
0037942971
-
-
P. E. Blöchl, E. Smargiassi, R. Car, D. B. Laks, W. Andreoni, and S. T. Pantelides, Phys. Rev. Lett. 70, 2435 (1993);
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 2435
-
-
Blöchl, P.E.1
Smargiassi, E.2
Car, R.3
Laks, D.B.4
Andreoni, W.5
Pantelides, S.T.6
-
3
-
-
0001739179
-
-
Phys. Rev. Lett.B. Sadigh, T. J. Lenosky, S. K. Theiss, M.-J. Caturla, T. D. da la Rubia, and M. A. Foad, 83, 4341 (1999);
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 4341
-
-
Sadigh, B.1
Lenosky, T.J.2
Theiss, S.K.3
Caturla, M.-J.4
Da La Rubia, T.D.5
Foad, M.A.6
-
4
-
-
0000065634
-
-
Phys. Rev. Lett.W. Windl, M. M. Bunea, R. Stumpf, S. T. Dunham, and M. P. Masquelier, 83, 4345 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 4345
-
-
Windl, W.1
Bunea, M.M.2
Stumpf, R.3
Dunham, S.T.4
Masquelier, M.P.5
-
8
-
-
0034226818
-
-
R. Vrijen, E. Yablonovitch, K. Wang, H. W. Jiang, A. Balandin, V. Roychowdhury, T. Mor, and D. DiVincenzo, Phys. Rev. A 62, 012306 (2000).
-
(2000)
Phys. Rev. A
, vol.62
, pp. 12306
-
-
Vrijen, R.1
Yablonovitch, E.2
Wang, K.3
Jiang, H.W.4
Balandin, A.5
Roychowdhury, V.6
Mor, T.7
DiVincenzo, D.8
-
9
-
-
39249083706
-
-
N. R. Zangenberg, J. Lundsgaard Hansen, J. Fage-Pedersen, and A. Nylandsted Larsen, Phys. Rev. Lett. 87, 125901 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 125901
-
-
Zangenberg, N.R.1
Lundsgaard Hansen, J.2
Fage-Pedersen, J.3
Nylandsted Larsen, A.4
-
10
-
-
4244205826
-
-
P. Dorenbos, S. Vrind, J. Dolfing, and H. W. den Hartog, Phys. Rev. B 35, 5766 (1987).
-
(1987)
Phys. Rev. B
, vol.35
, pp. 5766
-
-
Dorenbos, P.1
Vrind, S.2
Dolfing, J.3
Den Hartog, H.W.4
-
11
-
-
20344379296
-
-
S. H. Wei, L. G. Ferreira, J. E. Bernard, and A. Zunger, Phys. Rev. B 42, 9622 (1990).
-
(1990)
Phys. Rev. B
, vol.42
, pp. 9622
-
-
Wei, S.H.1
Ferreira, L.G.2
Bernard, J.E.3
Zunger, A.4
-
12
-
-
0035891022
-
-
P. Venezuela, G. M. Dalpian, A. J. R. da Silva, and A. Fazzio, Phys. Rev. B 64, 193202 (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 193202
-
-
Venezuela, P.1
Dalpian, G.M.2
Da Silva, A.J.R.3
Fazzio, A.4
-
13
-
-
0031362068
-
-
M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler, Comput. Phys. Commun. 107, 187 (1997).
-
(1997)
Comput. Phys. Commun.
, vol.107
, pp. 187
-
-
Bockstedte, M.1
Kley, A.2
Neugebauer, J.3
Scheffler, M.4
-
20
-
-
85038345150
-
-
(formula presented) depends on the growth conditions of the material. For element-i-rich growth conditions, (formula presented) equals (formula presented) the chemical potential of element i in the bulk, and the chemical potential of the other element equals (formula presented) Here we consider only Si-rich conditions, but if Ge-rich conditions would be considered all the formation energies would increase by only 0.014 eV
-
(formula presented) depends on the growth conditions of the material. For element-i-rich growth conditions, (formula presented) equals (formula presented) the chemical potential of element i in the bulk, and the chemical potential of the other element equals (formula presented) Here we consider only Si-rich conditions, but if Ge-rich conditions would be considered all the formation energies would increase by only 0.014 eV.
-
-
-
-
21
-
-
85038323383
-
-
It is unimportant whether a Si or a Ge atom is removed from the alloy to create the vacancy. We have checked this by calculating the formation energies of two vacancies with exactly the same configurations but in which either a Si or a Ge atom was removed. The difference in the formation energies in these two cases is smaller than 0.01 eV
-
It is unimportant whether a Si or a Ge atom is removed from the alloy to create the vacancy. We have checked this by calculating the formation energies of two vacancies with exactly the same configurations but in which either a Si or a Ge atom was removed. The difference in the formation energies in these two cases is smaller than 0.01 eV.
-
-
-
-
22
-
-
0001059762
-
-
M. J. Puska, S. Pöykkö, M. Pesola, and R. M. Nieminen, Phys. Rev. B 58, 1318 (1998).
-
(1998)
Phys. Rev. B
, vol.58
, pp. 1318
-
-
Puska, M.J.1
Pöykkö, S.2
Pesola, M.3
Nieminen, R.M.4
-
23
-
-
0000762389
-
-
A. Fazzio, A. Janotti, A. J. R. da Silva, and R. Mota, Phys. Rev. B 61, 2401 (2000);
-
(2000)
Phys. Rev. B
, vol.61
, pp. 2401
-
-
Fazzio, A.1
Janotti, A.2
Da Silva, A.J.R.3
Mota, R.4
-
24
-
-
0033344455
-
-
A. Janotti, R. Baierle, A. J. R. da Silva, R. Mota, and A. Fazzio, Physica B 273-274, 575 (1999).
-
(1999)
Physica B
, vol.273-274
, pp. 575
-
-
Janotti, A.1
Baierle, R.2
Da Silva, A.J.R.3
Mota, R.4
Fazzio, A.5
-
25
-
-
0001649616
-
-
A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, Phys. Rev. B 61, 15 019 (2000).
-
(2000)
Phys. Rev. B
, vol.61
, pp. 15019
-
-
Kohan, A.F.1
Ceder, G.2
Morgan, D.3
Van De Walle, C.G.4
-
26
-
-
85038309237
-
-
We have calculated the migration barrier for Ge diffusion in pure Si and pure Ge and obtained 0.15 and 0.25 eV, respectively. Therefore, it is likely that (formula presented) will fall in this range for all possible migration paths in the alloy
-
We have calculated the migration barrier for Ge diffusion in pure Si and pure Ge and obtained 0.15 and 0.25 eV, respectively. Therefore, it is likely that (formula presented) will fall in this range for all possible migration paths in the alloy.
-
-
-
|