-
1
-
-
14844295742
-
Migration of dendritic cell based cancer vaccines: in vivo veritas?
-
Adema, G.J., de Vries, I.J.M., Punt, C.J., Figdor, C.G., Migration of dendritic cell based cancer vaccines: in vivo veritas?. Curr. Opin. Immunol. 17 (2005), 170–174.
-
(2005)
Curr. Opin. Immunol.
, vol.17
, pp. 170-174
-
-
Adema, G.J.1
de Vries, I.J.M.2
Punt, C.J.3
Figdor, C.G.4
-
2
-
-
84880280631
-
viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
-
Amir, A.D., Davis, K.L., Tadmor, M.D., Simonds, E.F., Levine, J.H., Bendall, S.C., Shenfeld, D.K., Krishnaswamy, S., Nolan, G.P., Pe'er, D., viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31 (2013), 545–552.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 545-552
-
-
Amir, A.D.1
Davis, K.L.2
Tadmor, M.D.3
Simonds, E.F.4
Levine, J.H.5
Bendall, S.C.6
Shenfeld, D.K.7
Krishnaswamy, S.8
Nolan, G.P.9
Pe'er, D.10
-
3
-
-
84905995910
-
Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells
-
Balan, S., Ollion, V., Colletti, N., Chelbi, R., Montanana-Sanchis, F., Liu, H., Vu Manh, T.P., Sanchez, C., Savoret, J., Perrot, I., et al. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J. Immunol. 193 (2014), 1622–1635.
-
(2014)
J. Immunol.
, vol.193
, pp. 1622-1635
-
-
Balan, S.1
Ollion, V.2
Colletti, N.3
Chelbi, R.4
Montanana-Sanchis, F.5
Liu, H.6
Vu Manh, T.P.7
Sanchez, C.8
Savoret, J.9
Perrot, I.10
-
4
-
-
0032546352
-
Dendritic cells and the control of immunity
-
Banchereau, J., Steinman, R.M., Dendritic cells and the control of immunity. Nature 392 (1998), 245–252.
-
(1998)
Nature
, vol.392
, pp. 245-252
-
-
Banchereau, J.1
Steinman, R.M.2
-
5
-
-
84929154141
-
Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells
-
Bigley, V., McGovern, N., Milne, P., Dickinson, R., Pagan, S., Cookson, S., Haniffa, M., Collin, M., Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J. Leukoc. Biol. 97 (2015), 627–634.
-
(2015)
J. Leukoc. Biol.
, vol.97
, pp. 627-634
-
-
Bigley, V.1
McGovern, N.2
Milne, P.3
Dickinson, R.4
Pagan, S.5
Cookson, S.6
Haniffa, M.7
Collin, M.8
-
6
-
-
84924724513
-
Circulating precursors of human CD1c+ and CD141+ dendritic cells
-
Breton, G., Lee, J., Zhou, Y.J., Schreiber, J.J., Keler, T., Puhr, S., Anandasabapathy, N., Schlesinger, S., Caskey, M., Liu, K., Nussenzweig, M.C., Circulating precursors of human CD1c+ and CD141+ dendritic cells. J. Exp. Med. 212 (2015), 401–413.
-
(2015)
J. Exp. Med.
, vol.212
, pp. 401-413
-
-
Breton, G.1
Lee, J.2
Zhou, Y.J.3
Schreiber, J.J.4
Keler, T.5
Puhr, S.6
Anandasabapathy, N.7
Schlesinger, S.8
Caskey, M.9
Liu, K.10
Nussenzweig, M.C.11
-
7
-
-
34347389931
-
Production of monoclonal antibodies that recognize the extracellular domain of mouse langerin/CD207
-
Cheong, C., Idoyaga, J., Do, Y., Pack, M., Park, S.H., Lee, H., Kang, Y.-S., Choi, J.-H., Kim, J.Y., Bonito, A., et al. Production of monoclonal antibodies that recognize the extracellular domain of mouse langerin/CD207. J. Immunol. Methods 324 (2007), 48–62.
-
(2007)
J. Immunol. Methods
, vol.324
, pp. 48-62
-
-
Cheong, C.1
Idoyaga, J.2
Do, Y.3
Pack, M.4
Park, S.H.5
Lee, H.6
Kang, Y.-S.7
Choi, J.-H.8
Kim, J.Y.9
Bonito, A.10
-
8
-
-
52949106528
-
Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development
-
Cisse, B., Caton, M.L., Lehner, M., Maeda, T., Scheu, S., Locksley, R., Holmberg, D., Zweier, C., den Hollander, N.S., Kant, S.G., et al. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135 (2008), 37–48.
-
(2008)
Cell
, vol.135
, pp. 37-48
-
-
Cisse, B.1
Caton, M.L.2
Lehner, M.3
Maeda, T.4
Scheu, S.5
Locksley, R.6
Holmberg, D.7
Zweier, C.8
den Hollander, N.S.9
Kant, S.G.10
-
9
-
-
77957020717
-
Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors
-
Cros, J., Cagnard, N., Woollard, K., Patey, N., Zhang, S.-Y., Senechal, B., Puel, A., Biswas, S.K., Moshous, D., Picard, C., et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33 (2010), 375–386.
-
(2010)
Immunity
, vol.33
, pp. 375-386
-
-
Cros, J.1
Cagnard, N.2
Woollard, K.3
Patey, N.4
Zhang, S.-Y.5
Senechal, B.6
Puel, A.7
Biswas, S.K.8
Moshous, D.9
Picard, C.10
-
10
-
-
84899073975
-
Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205
-
Dhodapkar, M.V., Sznol, M., Zhao, B., Wang, D., Carvajal, R.D., Keohan, M.L., Chuang, E., Sanborn, R.E., Lutzky, J., Powderly, J., et al. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci. Transl. Med., 6, 2014, 232ra51.
-
(2014)
Sci. Transl. Med.
, vol.6
, pp. 232ra51
-
-
Dhodapkar, M.V.1
Sznol, M.2
Zhao, B.3
Wang, D.4
Carvajal, R.D.5
Keohan, M.L.6
Chuang, E.7
Sanborn, R.E.8
Lutzky, J.9
Powderly, J.10
-
11
-
-
84923103556
-
Vaccine molecules targeting Xcr1 on cross-presenting DCs induce protective CD8+ T-cell responses against influenza virus
-
Fossum, E., Grødeland, G., Terhorst, D., Tveita, A.A., Vikse, E., Mjaaland, S., Henri, S., Malissen, B., Bogen, B., Vaccine molecules targeting Xcr1 on cross-presenting DCs induce protective CD8+ T-cell responses against influenza virus. Eur. J. Immunol. 45 (2015), 624–635.
-
(2015)
Eur. J. Immunol.
, vol.45
, pp. 624-635
-
-
Fossum, E.1
Grødeland, G.2
Terhorst, D.3
Tveita, A.A.4
Vikse, E.5
Mjaaland, S.6
Henri, S.7
Malissen, B.8
Bogen, B.9
-
12
-
-
78650178058
-
Continuous expression of the transcription factor e2-2 maintains the cell fate of mature plasmacytoid dendritic cells
-
Ghosh, H.S., Cisse, B., Bunin, A., Lewis, K.L., Reizis, B., Continuous expression of the transcription factor e2-2 maintains the cell fate of mature plasmacytoid dendritic cells. Immunity 33 (2010), 905–916.
-
(2010)
Immunity
, vol.33
, pp. 905-916
-
-
Ghosh, H.S.1
Cisse, B.2
Bunin, A.3
Lewis, K.L.4
Reizis, B.5
-
13
-
-
85015777170
-
Dendritic cells display subset and tissue-specific maturation dynamics over human life
-
Granot, T., Senda, T., Carpenter, D.J., Matsuoka, N., Weiner, J., Gordon, C.L., Miron, M., Kumar, B.V., Griesemer, A., Ho, S.-H., et al. Dendritic cells display subset and tissue-specific maturation dynamics over human life. Immunity 46 (2017), 504–515.
-
(2017)
Immunity
, vol.46
, pp. 504-515
-
-
Granot, T.1
Senda, T.2
Carpenter, D.J.3
Matsuoka, N.4
Weiner, J.5
Gordon, C.L.6
Miron, M.7
Kumar, B.V.8
Griesemer, A.9
Ho, S.-H.10
-
14
-
-
78650409670
-
Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons
-
Gregorio, J., Meller, S., Conrad, C., Di Nardo, A., Homey, B., Lauerma, A., Arai, N., Gallo, R.L., Digiovanni, J., Gilliet, M., Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J. Exp. Med. 207 (2010), 2921–2930.
-
(2010)
J. Exp. Med.
, vol.207
, pp. 2921-2930
-
-
Gregorio, J.1
Meller, S.2
Conrad, C.3
Di Nardo, A.4
Homey, B.5
Lauerma, A.6
Arai, N.7
Gallo, R.L.8
Digiovanni, J.9
Gilliet, M.10
-
15
-
-
0030949479
-
The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand
-
Grouard, G., Rissoan, M.C., Filgueira, L., Durand, I., Banchereau, J., Liu, Y.J., The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185 (1997), 1101–1111.
-
(1997)
J. Exp. Med.
, vol.185
, pp. 1101-1111
-
-
Grouard, G.1
Rissoan, M.C.2
Filgueira, L.3
Durand, I.4
Banchereau, J.5
Liu, Y.J.6
-
16
-
-
84990961171
-
Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species
-
Guilliams, M., Dutertre, C.-A., Scott, C.L., McGovern, N., Sichien, D., Chakarov, S., Van Gassen, S., Chen, J., Poidinger, M., De Prijck, S., et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45 (2016), 669–684.
-
(2016)
Immunity
, vol.45
, pp. 669-684
-
-
Guilliams, M.1
Dutertre, C.-A.2
Scott, C.L.3
McGovern, N.4
Sichien, D.5
Chakarov, S.6
Van Gassen, S.7
Chen, J.8
Poidinger, M.9
De Prijck, S.10
-
17
-
-
84991669523
-
A pH- and ionic strength-dependent conformational change in the neck region regulates DNGR-1 function in dendritic cells
-
Hanč, P., Schulz, O., Fischbach, H., Martin, S.R., Kjær, S., Reis E Sousa, C., A pH- and ionic strength-dependent conformational change in the neck region regulates DNGR-1 function in dendritic cells. EMBO J. 35 (2016), 2484–2497.
-
(2016)
EMBO J.
, vol.35
, pp. 2484-2497
-
-
Hanč, P.1
Schulz, O.2
Fischbach, H.3
Martin, S.R.4
Kjær, S.5
Reis E Sousa, C.6
-
18
-
-
84864293006
-
Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells
-
Haniffa, M., Shin, A., Bigley, V., McGovern, N., Teo, P., See, P., Wasan, P.S., Wang, X.-N., Malinarich, F., Malleret, B., et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37 (2012), 60–73.
-
(2012)
Immunity
, vol.37
, pp. 60-73
-
-
Haniffa, M.1
Shin, A.2
Bigley, V.3
McGovern, N.4
Teo, P.5
See, P.6
Wasan, P.S.7
Wang, X.-N.8
Malinarich, F.9
Malleret, B.10
-
19
-
-
85053787162
-
Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment
-
Heidkamp, G.F., Sander, J., Lehmann, C.H.K., Heger, L., Eissing, N., Baranska, A., Lühr, J.J., Hoffmann, A., Reimer, K.C., Lux, A., et al. Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment. Sci. Immunol., 1, 2016, eaai7677.
-
(2016)
Sci. Immunol.
, vol.1
, pp. eaai7677
-
-
Heidkamp, G.F.1
Sander, J.2
Lehmann, C.H.K.3
Heger, L.4
Eissing, N.5
Baranska, A.6
Lühr, J.J.7
Hoffmann, A.8
Reimer, K.C.9
Lux, A.10
-
20
-
-
56449097442
-
Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity
-
Hildner, K., Edelson, B.T., Purtha, W.E., Diamond, M., Matsushita, H., Kohyama, M., Calderon, B., Schraml, B.U., Unanue, E.R., Diamond, M.S., et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322 (2008), 1097–1100.
-
(2008)
Science
, vol.322
, pp. 1097-1100
-
-
Hildner, K.1
Edelson, B.T.2
Purtha, W.E.3
Diamond, M.4
Matsushita, H.5
Kohyama, M.6
Calderon, B.7
Schraml, B.U.8
Unanue, E.R.9
Diamond, M.S.10
-
21
-
-
47749146942
-
CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes
-
Huysamen, C., Willment, J.A., Dennehy, K.M., Brown, G.D., CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J. Biol. Chem. 283 (2008), 16693–16701.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 16693-16701
-
-
Huysamen, C.1
Willment, J.A.2
Dennehy, K.M.3
Brown, G.D.4
-
22
-
-
79952294318
-
Comparable T helper 1 (Th1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A
-
Idoyaga, J., Lubkin, A., Fiorese, C., Lahoud, M.H., Caminschi, I., Huang, Y., Rodriguez, A., Clausen, B.E., Park, C.G., Trumpfheller, C., Steinman, R.M., Comparable T helper 1 (Th1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proc. Natl. Acad. Sci. USA 108 (2011), 2384–2389.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 2384-2389
-
-
Idoyaga, J.1
Lubkin, A.2
Fiorese, C.3
Lahoud, M.H.4
Caminschi, I.5
Huang, Y.6
Rodriguez, A.7
Clausen, B.E.8
Park, C.G.9
Trumpfheller, C.10
Steinman, R.M.11
-
23
-
-
84873331871
-
Specialized role of migratory dendritic cells in peripheral tolerance induction
-
Idoyaga, J., Fiorese, C., Zbytnuik, L., Lubkin, A., Miller, J., Malissen, B., Mucida, D., Merad, M., Steinman, R.M., Specialized role of migratory dendritic cells in peripheral tolerance induction. J. Clin. Invest. 123 (2013), 844–854.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 844-854
-
-
Idoyaga, J.1
Fiorese, C.2
Zbytnuik, L.3
Lubkin, A.4
Miller, J.5
Malissen, B.6
Mucida, D.7
Merad, M.8
Steinman, R.M.9
-
24
-
-
42649125225
-
PD-1 and its ligands in tolerance and immunity
-
Keir, M.E., Butte, M.J., Freeman, G.J., Sharpe, A.H., PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26 (2008), 677–704.
-
(2008)
Annu. Rev. Immunol.
, vol.26
, pp. 677-704
-
-
Keir, M.E.1
Butte, M.J.2
Freeman, G.J.3
Sharpe, A.H.4
-
25
-
-
51349093240
-
Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells
-
Klechevsky, E., Morita, R., Liu, M., Cao, Y., Coquery, S., Thompson-Snipes, L., Briere, F., Chaussabel, D., Zurawski, G., Palucka, A.K., et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 29 (2008), 497–510.
-
(2008)
Immunity
, vol.29
, pp. 497-510
-
-
Klechevsky, E.1
Morita, R.2
Liu, M.3
Cao, Y.4
Coquery, S.5
Thompson-Snipes, L.6
Briere, F.7
Chaussabel, D.8
Zurawski, G.9
Palucka, A.K.10
-
26
-
-
84948661916
-
Regulation of macrophage development and function in peripheral tissues
-
Lavin, Y., Mortha, A., Rahman, A., Merad, M., Regulation of macrophage development and function in peripheral tissues. Nat. Rev. Immunol. 15 (2015), 731–744.
-
(2015)
Nat. Rev. Immunol.
, vol.15
, pp. 731-744
-
-
Lavin, Y.1
Mortha, A.2
Rahman, A.3
Merad, M.4
-
27
-
-
76949097340
-
Quantitative proteomics reveals subset-specific viral recognition in dendritic cells
-
Luber, C.A., Cox, J., Lauterbach, H., Fancke, B., Selbach, M., Tschopp, J., Akira, S., Wiegand, M., Hochrein, H., O'Keeffe, M., Mann, M., Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32 (2010), 279–289.
-
(2010)
Immunity
, vol.32
, pp. 279-289
-
-
Luber, C.A.1
Cox, J.2
Lauterbach, H.3
Fancke, B.4
Selbach, M.5
Tschopp, J.6
Akira, S.7
Wiegand, M.8
Hochrein, H.9
O'Keeffe, M.10
Mann, M.11
-
28
-
-
67449128181
-
CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions
-
Matsui, T., Connolly, J.E., Michnevitz, M., Chaussabel, D., Yu, C.I., Glaser, C., Tindle, S., Pypaert, M., Freitas, H., Piqueras, B., et al. CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J. Immunol. 182 (2009), 6815–6823.
-
(2009)
J. Immunol.
, vol.182
, pp. 6815-6823
-
-
Matsui, T.1
Connolly, J.E.2
Michnevitz, M.3
Chaussabel, D.4
Yu, C.I.5
Glaser, C.6
Tindle, S.7
Pypaert, M.8
Freitas, H.9
Piqueras, B.10
-
29
-
-
85006819029
-
The heterogeneity of Ly6C(hi) monocytes controls their differentiation into iNOS(+) macrophages or monocyte-derived dendritic cells
-
Menezes, S., Melandri, D., Anselmi, G., Perchet, T., Loschko, J., Dubrot, J., Patel, R., Gautier, E.L., Hugues, S., Longhi, M.P., et al. The heterogeneity of Ly6C(hi) monocytes controls their differentiation into iNOS(+) macrophages or monocyte-derived dendritic cells. Immunity 45 (2016), 1205–1218.
-
(2016)
Immunity
, vol.45
, pp. 1205-1218
-
-
Menezes, S.1
Melandri, D.2
Anselmi, G.3
Perchet, T.4
Loschko, J.5
Dubrot, J.6
Patel, R.7
Gautier, E.L.8
Hugues, S.9
Longhi, M.P.10
-
30
-
-
84875528275
-
The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting
-
Merad, M., Sathe, P., Helft, J., Miller, J., Mortha, A., The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31 (2013), 563–604.
-
(2013)
Annu. Rev. Immunol.
, vol.31
, pp. 563-604
-
-
Merad, M.1
Sathe, P.2
Helft, J.3
Miller, J.4
Mortha, A.5
-
31
-
-
84864296761
-
Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage
-
Meredith, M.M., Liu, K., Darrasse-Jeze, G., Kamphorst, A.O., Schreiber, H.A., Guermonprez, P., Idoyaga, J., Cheong, C., Yao, K.H., Niec, R.E., Nussenzweig, M.C., Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209 (2012), 1153–1165.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1153-1165
-
-
Meredith, M.M.1
Liu, K.2
Darrasse-Jeze, G.3
Kamphorst, A.O.4
Schreiber, H.A.5
Guermonprez, P.6
Idoyaga, J.7
Cheong, C.8
Yao, K.H.9
Niec, R.E.10
Nussenzweig, M.C.11
-
32
-
-
79958053079
-
Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status
-
Mittag, D., Proietto, A.I., Loudovaris, T., Mannering, S.I., Vremec, D., Shortman, K., Wu, L., Harrison, L.C., Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status. J. Immunol. 186 (2011), 6207–6217.
-
(2011)
J. Immunol.
, vol.186
, pp. 6207-6217
-
-
Mittag, D.1
Proietto, A.I.2
Loudovaris, T.3
Mannering, S.I.4
Vremec, D.5
Shortman, K.6
Wu, L.7
Harrison, L.C.8
-
33
-
-
79959545223
-
Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self-antigens in cancer patients
-
Morse, M.A., Chapman, R., Powderly, J., Blackwell, K., Keler, T., Green, J., Riggs, R., He, L.-Z., Ramakrishna, V., Vitale, L., et al. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self-antigens in cancer patients. Clin. Cancer Res. 17 (2011), 4844–4853.
-
(2011)
Clin. Cancer Res.
, vol.17
, pp. 4844-4853
-
-
Morse, M.A.1
Chapman, R.2
Powderly, J.3
Blackwell, K.4
Keler, T.5
Green, J.6
Riggs, R.7
He, L.-Z.8
Ramakrishna, V.9
Vitale, L.10
-
34
-
-
84880721353
-
Dendritic-cell-based therapeutic cancer vaccines
-
Palucka, K., Banchereau, J., Dendritic-cell-based therapeutic cancer vaccines. Immunity 39 (2013), 38–48.
-
(2013)
Immunity
, vol.39
, pp. 38-48
-
-
Palucka, K.1
Banchereau, J.2
-
35
-
-
79953059788
-
Plasmacytoid dendritic cells: recent progress and open questions
-
Reizis, B., Bunin, A., Ghosh, H.S., Lewis, K.L., Sisirak, V., Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immunol. 29 (2011), 163–183.
-
(2011)
Annu. Rev. Immunol.
, vol.29
, pp. 163-183
-
-
Reizis, B.1
Bunin, A.2
Ghosh, H.S.3
Lewis, K.L.4
Sisirak, V.5
-
36
-
-
84935119898
-
Human and mouse mononuclear phagocyte networks: a tale of two species?
-
Reynolds, G., Haniffa, M., Human and mouse mononuclear phagocyte networks: a tale of two species?. Front. Immunol., 6, 2015, 330.
-
(2015)
Front. Immunol.
, vol.6
, pp. 330
-
-
Reynolds, G.1
Haniffa, M.2
-
37
-
-
0028289244
-
Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha
-
Sallusto, F., Lanzavecchia, A., Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179 (1994), 1109–1118.
-
(1994)
J. Exp. Med.
, vol.179
, pp. 1109-1118
-
-
Sallusto, F.1
Lanzavecchia, A.2
-
38
-
-
84968624557
-
Automated mapping of phenotype space with single-cell data
-
Samusik, N., Good, Z., Spitzer, M.H., Davis, K.L., Nolan, G.P., Automated mapping of phenotype space with single-cell data. Nat. Methods 13 (2016), 493–496.
-
(2016)
Nat. Methods
, vol.13
, pp. 493-496
-
-
Samusik, N.1
Good, Z.2
Spitzer, M.H.3
Davis, K.L.4
Nolan, G.P.5
-
39
-
-
45749112103
-
Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin
-
Sancho, D., Mourão-Sá, D., Joffre, O.P., Schulz, O., Rogers, N.C., Pennington, D.J., Carlyle, J.R., Reis e Sousa, C., Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J. Clin. Invest. 118 (2008), 2098–2110.
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 2098-2110
-
-
Sancho, D.1
Mourão-Sá, D.2
Joffre, O.P.3
Schulz, O.4
Rogers, N.C.5
Pennington, D.J.6
Carlyle, J.R.7
Reis e Sousa, C.8
-
40
-
-
84864297838
-
Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages
-
Satpathy, A.T., Kc, W., Albring, J.C., Edelson, B.T., Kretzer, N.M., Bhattacharya, D., Murphy, T.L., Murphy, K.M., Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209 (2012), 1135–1152.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1135-1152
-
-
Satpathy, A.T.1
Kc, W.2
Albring, J.C.3
Edelson, B.T.4
Kretzer, N.M.5
Bhattacharya, D.6
Murphy, T.L.7
Murphy, K.M.8
-
41
-
-
84878191150
-
IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses
-
Schlitzer, A., McGovern, N., Teo, P., Zelante, T., Atarashi, K., Low, D., Ho, A.W.S., See, P., Shin, A., Wasan, P.S., et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38 (2013), 970–983.
-
(2013)
Immunity
, vol.38
, pp. 970-983
-
-
Schlitzer, A.1
McGovern, N.2
Teo, P.3
Zelante, T.4
Atarashi, K.5
Low, D.6
Ho, A.W.S.7
See, P.8
Shin, A.9
Wasan, P.S.10
-
42
-
-
84882786445
-
Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage
-
Schraml, B.U., van Blijswijk, J., Zelenay, S., Whitney, P.G., Filby, A., Acton, S.E., Rogers, N.C., Moncaut, N., Carvajal, J.J., Reis e Sousa, C., Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. Cell 154 (2013), 843–858.
-
(2013)
Cell
, vol.154
, pp. 843-858
-
-
Schraml, B.U.1
van Blijswijk, J.2
Zelenay, S.3
Whitney, P.G.4
Filby, A.5
Acton, S.E.6
Rogers, N.C.7
Moncaut, N.8
Carvajal, J.J.9
Reis e Sousa, C.10
-
43
-
-
85027934223
-
Mapping the human DC lineage through the integration of high-dimensional techniques
-
See, P., Dutertre, C.-A., Chen, J., Günther, P., McGovern, N., Irac, S.E., Gunawan, M., Beyer, M., Händler, K., Duan, K., et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science, 356, 2017, eaag3009.
-
(2017)
Science
, vol.356
, pp. eaag3009
-
-
See, P.1
Dutertre, C.-A.2
Chen, J.3
Günther, P.4
McGovern, N.5
Irac, S.E.6
Gunawan, M.7
Beyer, M.8
Händler, K.9
Duan, K.10
-
44
-
-
84861750928
-
Characterization of resident and migratory dendritic cells in human lymph nodes
-
Segura, E., Valladeau-Guilemond, J., Donnadieu, M.H., Sastre-Garau, X., Soumelis, V., Amigorena, S., Characterization of resident and migratory dendritic cells in human lymph nodes. J. Exp. Med. 209 (2012), 653–660.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 653-660
-
-
Segura, E.1
Valladeau-Guilemond, J.2
Donnadieu, M.H.3
Sastre-Garau, X.4
Soumelis, V.5
Amigorena, S.6
-
45
-
-
84908407414
-
Targeting human dendritic cells in situ to improve vaccines
-
Sehgal, K., Dhodapkar, K.M., Dhodapkar, M.V., Targeting human dendritic cells in situ to improve vaccines. Immunol. Lett. 162:1 Pt A (2014), 59–67.
-
(2014)
Immunol. Lett.
, vol.162
, Issue.1
, pp. 59-67
-
-
Sehgal, K.1
Dhodapkar, K.M.2
Dhodapkar, M.V.3
-
46
-
-
85008239935
-
Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency
-
Simoni, Y., Fehlings, M., Kløverpris, H.N., McGovern, N., Koo, S.-L., Loh, C.Y., Lim, S., Kurioka, A., Fergusson, J.R., Tang, C.-L., et al. Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity 46 (2017), 148–161.
-
(2017)
Immunity
, vol.46
, pp. 148-161
-
-
Simoni, Y.1
Fehlings, M.2
Kløverpris, H.N.3
McGovern, N.4
Koo, S.-L.5
Loh, C.Y.6
Lim, S.7
Kurioka, A.8
Fergusson, J.R.9
Tang, C.-L.10
-
47
-
-
84855931820
-
Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity
-
Trumpfheller, C., Longhi, M.P., Caskey, M., Idoyaga, J., Bozzacco, L., Keler, T., Schlesinger, S.J., Steinman, R.M., Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity. J. Intern. Med. 271 (2012), 183–192.
-
(2012)
J. Intern. Med.
, vol.271
, pp. 183-192
-
-
Trumpfheller, C.1
Longhi, M.P.2
Caskey, M.3
Idoyaga, J.4
Bozzacco, L.5
Keler, T.6
Schlesinger, S.J.7
Steinman, R.M.8
-
48
-
-
85070435549
-
Targeting CLEC9A delivers antigen to human CD141(+) DC for CD4(+) and CD8(+)T cell recognition
-
Tullett, K.M., Leal Rojas, I.M., Minoda, Y., Tan, P.S., Zhang, J.-G., Smith, C., Khanna, R., Shortman, K., Caminschi, I., Lahoud, M.H., Radford, K.J., Targeting CLEC9A delivers antigen to human CD141(+) DC for CD4(+) and CD8(+)T cell recognition. JCI Insight, 1, 2016, e87102.
-
(2016)
JCI Insight
, vol.1
, pp. e87102
-
-
Tullett, K.M.1
Leal Rojas, I.M.2
Minoda, Y.3
Tan, P.S.4
Zhang, J.-G.5
Smith, C.6
Khanna, R.7
Shortman, K.8
Caminschi, I.9
Lahoud, M.H.10
Radford, K.J.11
-
49
-
-
85018582872
-
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
-
Villani, A.-C., Satija, R., Reynolds, G., Sarkizova, S., Shekhar, K., Fletcher, J., Griesbeck, M., Butler, A., Zheng, S., Lazo, S., et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science, 356, 2017, eaah4573.
-
(2017)
Science
, vol.356
, pp. eaah4573
-
-
Villani, A.-C.1
Satija, R.2
Reynolds, G.3
Sarkizova, S.4
Shekhar, K.5
Fletcher, J.6
Griesbeck, M.7
Butler, A.8
Zheng, S.9
Lazo, S.10
-
50
-
-
85013293350
-
A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes
-
Zhang, H., Gregorio, J.D., Iwahori, T., Zhang, X., Choi, O., Tolentino, L.L., Prestwood, T., Carmi, Y., Engleman, E.G., A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes. Proc. Natl. Acad. Sci. USA 114 (2017), 1988–1993.
-
(2017)
Proc. Natl. Acad. Sci. USA
, vol.114
, pp. 1988-1993
-
-
Zhang, H.1
Gregorio, J.D.2
Iwahori, T.3
Zhang, X.4
Choi, O.5
Tolentino, L.L.6
Prestwood, T.7
Carmi, Y.8
Engleman, E.G.9
|