-
1
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520: 186-191. https://doi.org/10.1038/nature14299.
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
Cong, L.2
Yan, W.X.3
Scott, D.A.4
Gootenberg, J.S.5
Kriz, A.J.6
Zetsche, B.7
Shalem, O.8
Wu, X.9
Makarova, K.S.10
Koonin, E.V.11
Sharp, P.A.12
Zhang, F.13
-
2
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347-355. https://doi.org/10.1038/nbt.2842.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
3
-
-
84908334356
-
Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii
-
Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP. 2014. Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell 13:1465-1469. https://doi.org/10.1128/EC.00213-14.
-
(2014)
Eukaryot Cell
, vol.13
, pp. 1465-1469
-
-
Jiang, W.1
Brueggeman, A.J.2
Horken, K.M.3
Plucinak, T.M.4
Weeks, D.P.5
-
4
-
-
84901834420
-
Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
-
Kim S, Kim D, Cho SW, Kim J, Kim JS. 2014. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012-1019. https://doi.org/10.1101/gr.171322.113.
-
(2014)
Genome Res
, vol.24
, pp. 1012-1019
-
-
Kim, S.1
Kim, D.2
Cho, S.W.3
Kim, J.4
Kim, J.S.5
-
5
-
-
84924089024
-
CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi
-
Peng D, Kurup SP, Yao PY, Minning TA, Tarleton RL. 2014. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. mBio 6:e02097-14. https://doi.org/10.1128/mBio.02097-14.
-
(2014)
Mbio
, vol.6
, pp. e02097-e02914
-
-
Peng, D.1
Kurup, S.P.2
Yao, P.Y.3
Minning, T.A.4
Tarleton, R.L.5
-
6
-
-
85013676135
-
Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization
-
Senturk S, Shirole NH, Nowak DG, Corbo V, Pal D, Vaughan A, Tuveson DA, Trotman LC, Kinney JB, Sordella R. 2017. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Nat Commun 8:14370. https://doi.org/10.1038/ncomms14370.
-
(2017)
Nat Commun
, vol.8
-
-
Senturk, S.1
Shirole, N.H.2
Nowak, D.G.3
Corbo, V.4
Pal, D.5
Vaughan, A.6
Tuveson, D.A.7
Trotman, L.C.8
Kinney, J.B.9
Sordella, R.10
-
7
-
-
84923297110
-
A split-Cas9 architecture for inducible genome editing and transcription modulation
-
Zetsche B, Volz SE, Zhang F. 2015. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33: 139-142. https://doi.org/10.1038/nbt.3149.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 139-142
-
-
Zetsche, B.1
Volz, S.E.2
Zhang, F.3
-
8
-
-
84939630169
-
Development of an intein-mediated split-Cas9 system for gene therapy
-
Truong DJ, Kühner K, Kühn R, Werfel S, Engelhardt S, Wurst W, Ortiz O. 2015. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res 43:6450-6458. https://doi.org/10.1093/nar/gkv601.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 6450-6458
-
-
Truong, D.J.1
Kühner, K.2
Kühn, R.3
Werfel, S.4
Engelhardt, S.5
Wurst, W.6
Ortiz, O.7
-
9
-
-
84930943161
-
Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection
-
Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S, Ravinder N, Chesnut JD. 2015. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208:44-53. https://doi.org/10.1016/j.jbiotec.2015.04.024.
-
(2015)
J Biotechnol
, vol.208
, pp. 44-53
-
-
Liang, X.1
Potter, J.2
Kumar, S.3
Zou, Y.4
Quintanilla, R.5
Sridharan, M.6
Carte, J.7
Chen, W.8
Roark, N.9
Ranganathan, S.10
Ravinder, N.11
Chesnut, J.D.12
-
10
-
-
84928393912
-
Efficient intracellular delivery of native proteins
-
D’Astolfo DS, Pagliero RJ, Pras A, Karthaus WR, Clevers H, Prasad V, Lebbink RJ, Rehmann H, Geijsen N. 2015. Efficient intracellular delivery of native proteins. Cell 161:674-690. https://doi.org/10.1016/j.cell.2015.03.028.
-
(2015)
Cell
, vol.161
, pp. 674-690
-
-
D’Astolfo, D.S.1
Pagliero, R.J.2
Pras, A.3
Karthaus, W.R.4
Clevers, H.5
Prasad, V.6
Lebbink, R.J.7
Rehmann, H.8
Geijsen, N.9
-
11
-
-
66949138915
-
Evaluation of high efficiency gene knockout strategies for Trypanosoma cruzi
-
Xu D, Brandán CP, Basombrío MA, Tarleton RL. 2009. Evaluation of high efficiency gene knockout strategies for Trypanosoma cruzi. BMC Microbiol 9:90. https://doi.org/10.1186/1471-2180-9-90.
-
(2009)
BMC Microbiol
, vol.9
, pp. 90
-
-
Xu, D.1
Brandán, C.P.2
Basombrío, M.A.3
Tarleton, R.L.4
-
12
-
-
0038326937
-
Trypanosoma cruzi clonal diversity and the epidemiology of Chagas’ disease
-
Buscaglia CA, Di Noia JM. 2003. Trypanosoma cruzi clonal diversity and the epidemiology of Chagas’ disease. Microbes Infect 5:419-427. https://doi.org/10.1016/S1286-4579(03)00050-9.
-
(2003)
Microbes Infect
, vol.5
, pp. 419-427
-
-
Buscaglia, C.A.1
Di Noia, J.M.2
-
13
-
-
84969432986
-
Molecular diversity of Trypanosoma cruzi detected in the vector Triatoma protracta from California, USA
-
Shender LA, Lewis MD, Rejmanek D, Mazet JA. 2016. Molecular diversity of Trypanosoma cruzi detected in the vector Triatoma protracta from California, USA. PLoS Negl Trop Dis 10:e0004291. https://doi.org/10.1371/journal.pntd.0004291.
-
(2016)
Plos Negl Trop Dis
, vol.10
-
-
Shender, L.A.1
Lewis, M.D.2
Rejmanek, D.3
Mazet, J.A.4
-
14
-
-
0025034295
-
Genomic variation of Trypanosoma cruzi: Involvement of multicopy genes
-
Wagner W, So M. 1990. Genomic variation of Trypanosoma cruzi: involvement of multicopy genes. Infect Immun 58:3217-3224.
-
(1990)
Infect Immun
, vol.58
, pp. 3217-3224
-
-
Wagner, W.1
So, M.2
-
15
-
-
36348960649
-
Sequence diversity and evolution of multigene families in Trypanosoma cruzi
-
Cerqueira GC, Bartholomeu DC, DaRocha WD, Hou L, Freitas-Silva DM, Machado CR, El-Sayed NM, Teixeira SM. 2008. Sequence diversity and evolution of multigene families in Trypanosoma cruzi. Mol Biochem Parasitol 157:65-72. https://doi.org/10.1016/j.molbiopara.2007.10.002.
-
(2008)
Mol Biochem Parasitol
, vol.157
, pp. 65-72
-
-
Cerqueira, G.C.1
Bartholomeu, D.C.2
Darocha, W.D.3
Hou, L.4
Freitas-Silva, D.M.5
Machado, C.R.6
El-Sayed, N.M.7
Teixeira, S.M.8
-
16
-
-
84987623914
-
Recombination-driven generation of the largest pathogen repository of antigen variants in the protozoan Trypanosoma cruzi
-
Weatherly DB, Peng D, Tarleton RL. 2016. Recombination-driven generation of the largest pathogen repository of antigen variants in the protozoan Trypanosoma cruzi. BMC Genomics 17:729. https://doi.org/10.1186/s12864-016-3037-z.
-
(2016)
BMC Genomics
, vol.17
, pp. 729
-
-
Weatherly, D.B.1
Peng, D.2
Tarleton, R.L.3
-
17
-
-
84940887923
-
CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment
-
Lander N, Li ZH, Niyogi S, Docampo R. 2015. CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment. mBio 6:e01012. https://doi.org/10.1128/mBio.01012-15.
-
(2015)
Mbio
, vol.6
-
-
Lander, N.1
Li, Z.H.2
Niyogi, S.3
Docampo, R.4
-
18
-
-
84895762113
-
A monoallelic deletion of the TcCRT gene increases the attenuation of a cultured Trypanosoma cruzi strain, protecting against an in vivo virulent challenge
-
Sánchez-Valdéz FJ, Pérez Brandán C, Ramírez G, Uncos AD, Zago MP, Cimino RO, Cardozo RM, Marco JD, Ferreira A, Basombrío MÁ. 2014. A monoallelic deletion of the TcCRT gene increases the attenuation of a cultured Trypanosoma cruzi strain, protecting against an in vivo virulent challenge. PLoS Negl Trop Dis 8:e2696. https://doi.org/10.1371/journal.pntd.0002696.
-
(2014)
Plos Negl Trop Dis
, vol.8
-
-
Sánchez-Valdéz, F.J.1
Pérez Brandán, C.2
Ramírez, G.3
Uncos, A.D.4
Zago, M.P.5
Cimino, R.O.6
Cardozo, R.M.7
Marco, J.D.8
Ferreira, A.9
Basombrío, M.Á.10
-
19
-
-
85022322746
-
Different roles of mitochondrial calcium uniporter complex subunits in growth and infectivity of Trypanosoma cruzi
-
Chiurillo MA, Lander N, Bertolini MS, Storey M, Vercesi AE, Docampo R. 2017. Different roles of mitochondrial calcium uniporter complex subunits in growth and infectivity of Trypanosoma cruzi. mBio 8:e00574-17. https://doi.org/10.1128/mBio.00574-17.
-
(2017)
Mbio
, vol.8
, pp. e00574-e00617
-
-
Chiurillo, M.A.1
Lander, N.2
Bertolini, M.S.3
Storey, M.4
Vercesi, A.E.5
Docampo, R.6
-
20
-
-
85002157024
-
CRISPR/ Cas9-mediated endogenous C-terminal tagging of Trypanosoma cruzi genes reveals the acidocalcisome localization of the inositol 1,4,5-trisphosphate receptor
-
Lander N, Chiurillo MA, Storey M, Vercesi AE, Docampo R. 2016. CRISPR/ Cas9-mediated endogenous C-terminal tagging of Trypanosoma cruzi genes reveals the acidocalcisome localization of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 291:25505-25515. https://doi.org/10.1074/jbc.M116.749655.
-
(2016)
J Biol Chem
, vol.291
, pp. 25505-25515
-
-
Lander, N.1
Chiurillo, M.A.2
Storey, M.3
Vercesi, A.E.4
Docampo, R.5
-
21
-
-
84953237699
-
Knockdown of inner arm protein IC138 in Trypanosoma brucei causes defective motility and flagellar detachment
-
Wilson CS, Chang AJ, Greene R, Machado S, Parsons MW, Takats TA, Zambetti LJ, Springer AL. 2015. Knockdown of inner arm protein IC138 in Trypanosoma brucei causes defective motility and flagellar detachment. PLoS One 10:e0139579. https://doi.org/10.1371/journal.pone.0139579.
-
(2015)
Plos One
, vol.10
-
-
Wilson, C.S.1
Chang, A.J.2
Greene, R.3
Machado, S.4
Parsons, M.W.5
Takats, T.A.6
Zambetti, L.J.7
Springer, A.L.8
-
22
-
-
36749050931
-
A repetitive protein essential for the flagellum attachment zone filament structure and function in Trypanosoma brucei
-
Vaughan S, Kohl L, Ngai I, Wheeler RJ, Gull K. 2008. A repetitive protein essential for the flagellum attachment zone filament structure and function in Trypanosoma brucei. Protist 159:127-136. https://doi.org/10.1016/j.protis.2007.08.005.
-
(2008)
Protist
, vol.159
, pp. 127-136
-
-
Vaughan, S.1
Kohl, L.2
Ngai, I.3
Wheeler, R.J.4
Gull, K.5
-
23
-
-
55749094547
-
KMP-11, a basal body and flagellar protein, is required for cell division in Trypanosoma brucei
-
Li Z, Wang CC. 2008. KMP-11, a basal body and flagellar protein, is required for cell division in Trypanosoma brucei. Eukaryot Cell 7:1941-1950. https://doi.org/10.1128/EC.00249-08.
-
(2008)
Eukaryot Cell
, vol.7
, pp. 1941-1950
-
-
Li, Z.1
Wang, C.C.2
-
24
-
-
79953882988
-
Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites
-
Hall BS, Bot C, Wilkinson SR. 2011. Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. J Biol Chem 286:13088-13095. https://doi.org/10.1074/jbc.M111.230847.
-
(2011)
J Biol Chem
, vol.286
, pp. 13088-13095
-
-
Hall, B.S.1
Bot, C.2
Wilkinson, S.R.3
-
25
-
-
84455170162
-
Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation
-
Hall BS, Wilkinson SR. 2012. Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob Agents Chemother 56:115-123. https://doi.org/10.1128/AAC.05135-11.
-
(2012)
Antimicrob Agents Chemother
, vol.56
, pp. 115-123
-
-
Hall, B.S.1
Wilkinson, S.R.2
-
26
-
-
77952358375
-
Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole
-
Chen CK, Leung SS, Guilbert C, Jacobson MP, McKerrow JH, Podust LM. 2010. Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole. PLoS Negl Trop Dis 4:e651. https://doi.org/10.1371/journal.pntd.0000651.
-
(2010)
Plos Negl Trop Dis
, vol.4
-
-
Chen, C.K.1
Leung, S.S.2
Guilbert, C.3
Jacobson, M.P.4
McKerrow, J.H.5
Podust, L.M.6
-
27
-
-
0027158311
-
Deletion of an immunodominant Trypanosoma cruzi surface glycoprotein disrupts flagellum-cell adhesion
-
Cooper R, de Jesus AR, Cross GA. 1993. Deletion of an immunodominant Trypanosoma cruzi surface glycoprotein disrupts flagellum-cell adhesion. J Cell Biol 122:149-156. https://doi.org/10.1083/jcb.122.1.149.
-
(1993)
J Cell Biol
, vol.122
, pp. 149-156
-
-
Cooper, R.1
De Jesus, A.R.2
Cross, G.A.3
-
28
-
-
33644998507
-
The flagellar attachment zone of Trypanosoma cruzi epimastigote forms
-
Rocha GM, Brandão BA, Mortara RA, Attias M, de Souza W, Carvalho TM. 2006. The flagellar attachment zone of Trypanosoma cruzi epimastigote forms. J Struct Biol 154:89-99. https://doi.org/10.1016/j.jsb.2005.11.008.
-
(2006)
J Struct Biol
, vol.154
, pp. 89-99
-
-
Rocha, G.M.1
Brandão, B.A.2
Mortara, R.A.3
Attias, M.4
De Souza, W.5
Carvalho, T.M.6
-
29
-
-
84942194082
-
First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites
-
Sollelis L, Ghorbal M, MacPherson CR, Martins RM, Kuk N, Crobu L, Bastien P, Scherf A, Lopez-Rubio JJ, Sterkers Y. 2015. First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites. Cell Microbiol 17:1405-1412. https://doi.org/10.1111/cmi.12456.
-
(2015)
Cell Microbiol
, vol.17
, pp. 1405-1412
-
-
Sollelis, L.1
Ghorbal, M.2
Macpherson, C.R.3
Martins, R.M.4
Kuk, N.5
Crobu, L.6
Bastien, P.7
Scherf, A.8
Lopez-Rubio, J.J.9
Sterkers, Y.10
-
30
-
-
84903975411
-
Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9
-
Shen B, Brown KM, Lee TD, Sibley LD. 2014. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. mBio 5:e01114-14. https://doi.org/10.1128/mBio.01114-14.
-
(2014)
Mbio
, vol.5
, pp. e01114-e01114
-
-
Shen, B.1
Brown, K.M.2
Lee, T.D.3
Sibley, L.D.4
-
31
-
-
84907188569
-
Efficient editing of malaria parasite genome using the CRISPR/Cas9 system
-
Zhang C, Xiao B, Jiang Y, Zhao Y, Li Z, Gao H, Ling Y, Wei J, Li S, Lu M, Su XZ, Cui H, Yuan J. 2014. Efficient editing of malaria parasite genome using the CRISPR/Cas9 system. mBio 5:e01414-14. https://doi.org/10.1128/mBio.01414-14.
-
(2014)
Mbio
, vol.5
, pp. e01414-e01414
-
-
Zhang, C.1
Xiao, B.2
Jiang, Y.3
Zhao, Y.4
Li, Z.5
Gao, H.6
Ling, Y.7
Wei, J.8
Li, S.9
Lu, M.10
Su, X.Z.11
Cui, H.12
Yuan, J.13
-
32
-
-
84905746811
-
Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system
-
Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio JJ. 2014. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 32: 819-821. https://doi.org/10.1038/nbt.2925.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 819-821
-
-
Ghorbal, M.1
Gorman, M.2
Macpherson, C.R.3
Martins, R.M.4
Scherf, A.5
Lopez-Rubio, J.J.6
-
33
-
-
84937933550
-
Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum
-
Vinayak S, Pawlowic MC, Sateriale A, Brooks CF, Studstill CJ, Bar-Peled Y, Cipriano MJ, Striepen B. 2015. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum. Nature 523:477-480. https://doi.org/10.1038/nature14651.
-
(2015)
Nature
, vol.523
, pp. 477-480
-
-
Vinayak, S.1
Pawlowic, M.C.2
Sateriale, A.3
Brooks, C.F.4
Studstill, C.J.5
Bar-Peled, Y.6
Cipriano, M.J.7
Striepen, B.8
-
34
-
-
85009088988
-
The MAP kinase MAPKLK1 is essential to Trypanosoma brucei proliferation and regulates proteins involved in mRNA metabolism
-
Batista M, Kugeratski FG, de Paula Lima CV, Probst CM, Kessler RL, de Godoy LM, Krieger MA, Marchini FK. 2017. The MAP kinase MAPKLK1 is essential to Trypanosoma brucei proliferation and regulates proteins involved in mRNA metabolism. J Proteom 154:118-127. https://doi.org/10.1016/j.jprot.2016.12.011.
-
(2017)
J Proteom
, vol.154
, pp. 118-127
-
-
Batista, M.1
Kugeratski, F.G.2
De Paula Lima, C.V.3
Probst, C.M.4
Kessler, R.L.5
De Godoy, L.M.6
Krieger, M.A.7
Marchini, F.K.8
-
35
-
-
84953438596
-
Trypanocidal action of bisphosphonium salts through a mitochondrial target in bloodstream form Trypanosoma brucei
-
Alkhaldi AA, Martinek J, Panicucci B, Dardonville C, Zíková A, de Koning HP. 2016. Trypanocidal action of bisphosphonium salts through a mitochondrial target in bloodstream form Trypanosoma brucei. Int J Parasitol Drugs Drug Resist 6:23-34. https://doi.org/10.1016/j.ijpddr.2015.12.002.
-
(2016)
Int J Parasitol Drugs Drug Resist
, vol.6
, pp. 23-34
-
-
Alkhaldi, A.A.1
Martinek, J.2
Panicucci, B.3
Dardonville, C.4
Zíková, A.5
De Koning, H.P.6
-
36
-
-
78951491179
-
Genome-wide RNAi screens in African trypanosomes identify the nifurtimox activator NTR and the eflornithine transporter AAT6
-
Baker N, Alsford S, Horn D. 2011. Genome-wide RNAi screens in African trypanosomes identify the nifurtimox activator NTR and the eflornithine transporter AAT6. Mol Biochem Parasitol 176:55-57. https://doi.org/10.1016/j.molbiopara.2010.11.010.
-
(2011)
Mol Biochem Parasitol
, vol.176
, pp. 55-57
-
-
Baker, N.1
Alsford, S.2
Horn, D.3
-
37
-
-
84940827347
-
CRISPR-Cas9-mediated genome editing in Leishmania donovani
-
Zhang WW, Matlashewski G. 2015. CRISPR-Cas9-mediated genome editing in Leishmania donovani. mBio 6:e00861-15. https://doi.org/10.1128/mBio.00861-15.
-
(2015)
Mbio
, vol.6
, pp. e00815-e00861
-
-
Zhang, W.W.1
Matlashewski, G.2
-
38
-
-
85018413228
-
A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids
-
Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E. 2017. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R Soc Open Sci 4:170095. https://doi.org/10.1098/rsos.170095.
-
(2017)
R Soc Open Sci
, vol.4
-
-
Beneke, T.1
Madden, R.2
Makin, L.3
Valli, J.4
Sunter, J.5
Gluenz, E.6
-
39
-
-
84942288077
-
Novel insights into RNP granules by employing the trypanosome’s microtubule skeleton as a molecular sieve
-
Fritz M, Vanselow J, Sauer N, Lamer S, Goos C, Siegel TN, Subota I, Schlosser A, Carrington M, Kramer S. 2015. Novel insights into RNP granules by employing the trypanosome’s microtubule skeleton as a molecular sieve. Nucleic Acids Res 43:8013-8032. https://doi.org/10.1093/nar/gkv731.
-
(2015)
Nucleic Acids Res 43:8013-
, pp. 8013-8032
-
-
Fritz, M.1
Vanselow, J.2
Sauer, N.3
Lamer, S.4
Goos, C.5
Siegel, T.N.6
Subota, I.7
Schlosser, A.8
Carrington, M.9
Kramer, S.10
-
40
-
-
0036500723
-
Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii
-
Morrissette NS, Sibley LD. 2002. Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii. J Cell Sci 115: 1017-1025.
-
(2002)
J Cell Sci
, vol.115
, pp. 1017-1025
-
-
Morrissette, N.S.1
Sibley, L.D.2
-
41
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821. https://doi.org/10.1126/science.1225829.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
42
-
-
84874608929
-
RNA-guidedediting of bacterial genomes using CRISPR-Cas systems
-
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guidedediting of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233-239. https://doi.org/10.1038/nbt.2508.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
43
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ, Joung JK. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481-485. https://doi.org/10.1038/nature14592.
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Topkar, V.V.4
Nguyen, N.T.5
Zheng, Z.6
Gonzales, A.P.7
Li, Z.8
Peterson, R.T.9
Yeh, J.R.10
Aryee, M.J.11
Joung, J.K.12
-
44
-
-
85013297989
-
In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni
-
Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, Song DW, Lee KJ, Jung MH, Kim S, Kim JH, Kim JH, Kim JS. 2017. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 8:14500. https://doi.org/10.1038/ncomms14500.
-
(2017)
Nat Commun
, vol.8
, pp. 14500
-
-
Kim, E.1
Koo, T.2
Park, S.W.3
Kim, D.4
Kim, K.5
Cho, H.Y.6
Song, D.W.7
Lee, K.J.8
Jung, M.H.9
Kim, S.10
Kim, J.H.11
Kim, J.H.12
Kim, J.S.13
-
45
-
-
0024948840
-
Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers
-
Hirumi H, Hirumi K. 1989. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol 75:985-989.
-
(1989)
J Parasitol
, vol.75
, pp. 985-989
-
-
Hirumi, H.1
Hirumi, K.2
-
46
-
-
85006340968
-
EuPaGDT: A web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens
-
Peng D, Tarleton R. 2015. EuPaGDT: A web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microb Genom 1:e000033. https://doi.org/10.1099/mgen.0.000033.
-
(2015)
Microb Genom
, vol.1
-
-
Peng, D.1
Tarleton, R.2
|