메뉴 건너뛰기




Volumn 8, Issue 6, 2017, Pages

Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-cas9 ribonucleoproteins

Author keywords

Cas9; CRISPR; Genome editing; Leishmania; Ribonucleoproteins; SaCas9; Trypanosoma; Trypanosoma brucei; Trypanosoma cruzi

Indexed keywords

RIBONUCLEOPROTEIN; RNA; SINGLE GUIDE RNA; UNCLASSIFIED DRUG;

EID: 85036530302     PISSN: 21612129     EISSN: 21507511     Source Type: Journal    
DOI: 10.1128/mBio.01788-17     Document Type: Article
Times cited : (74)

References (46)
  • 2
    • 84900314611 scopus 로고    scopus 로고
    • CRISPR-Cas systems for editing, regulating and targeting genomes
    • Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347-355. https://doi.org/10.1038/nbt.2842.
    • (2014) Nat Biotechnol , vol.32 , pp. 347-355
    • Sander, J.D.1    Joung, J.K.2
  • 3
    • 84908334356 scopus 로고    scopus 로고
    • Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii
    • Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP. 2014. Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell 13:1465-1469. https://doi.org/10.1128/EC.00213-14.
    • (2014) Eukaryot Cell , vol.13 , pp. 1465-1469
    • Jiang, W.1    Brueggeman, A.J.2    Horken, K.M.3    Plucinak, T.M.4    Weeks, D.P.5
  • 4
    • 84901834420 scopus 로고    scopus 로고
    • Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
    • Kim S, Kim D, Cho SW, Kim J, Kim JS. 2014. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012-1019. https://doi.org/10.1101/gr.171322.113.
    • (2014) Genome Res , vol.24 , pp. 1012-1019
    • Kim, S.1    Kim, D.2    Cho, S.W.3    Kim, J.4    Kim, J.S.5
  • 5
    • 84924089024 scopus 로고    scopus 로고
    • CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi
    • Peng D, Kurup SP, Yao PY, Minning TA, Tarleton RL. 2014. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. mBio 6:e02097-14. https://doi.org/10.1128/mBio.02097-14.
    • (2014) Mbio , vol.6 , pp. e02097-e02914
    • Peng, D.1    Kurup, S.P.2    Yao, P.Y.3    Minning, T.A.4    Tarleton, R.L.5
  • 7
    • 84923297110 scopus 로고    scopus 로고
    • A split-Cas9 architecture for inducible genome editing and transcription modulation
    • Zetsche B, Volz SE, Zhang F. 2015. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33: 139-142. https://doi.org/10.1038/nbt.3149.
    • (2015) Nat Biotechnol , vol.33 , pp. 139-142
    • Zetsche, B.1    Volz, S.E.2    Zhang, F.3
  • 11
    • 66949138915 scopus 로고    scopus 로고
    • Evaluation of high efficiency gene knockout strategies for Trypanosoma cruzi
    • Xu D, Brandán CP, Basombrío MA, Tarleton RL. 2009. Evaluation of high efficiency gene knockout strategies for Trypanosoma cruzi. BMC Microbiol 9:90. https://doi.org/10.1186/1471-2180-9-90.
    • (2009) BMC Microbiol , vol.9 , pp. 90
    • Xu, D.1    Brandán, C.P.2    Basombrío, M.A.3    Tarleton, R.L.4
  • 12
    • 0038326937 scopus 로고    scopus 로고
    • Trypanosoma cruzi clonal diversity and the epidemiology of Chagas’ disease
    • Buscaglia CA, Di Noia JM. 2003. Trypanosoma cruzi clonal diversity and the epidemiology of Chagas’ disease. Microbes Infect 5:419-427. https://doi.org/10.1016/S1286-4579(03)00050-9.
    • (2003) Microbes Infect , vol.5 , pp. 419-427
    • Buscaglia, C.A.1    Di Noia, J.M.2
  • 13
    • 84969432986 scopus 로고    scopus 로고
    • Molecular diversity of Trypanosoma cruzi detected in the vector Triatoma protracta from California, USA
    • Shender LA, Lewis MD, Rejmanek D, Mazet JA. 2016. Molecular diversity of Trypanosoma cruzi detected in the vector Triatoma protracta from California, USA. PLoS Negl Trop Dis 10:e0004291. https://doi.org/10.1371/journal.pntd.0004291.
    • (2016) Plos Negl Trop Dis , vol.10
    • Shender, L.A.1    Lewis, M.D.2    Rejmanek, D.3    Mazet, J.A.4
  • 14
    • 0025034295 scopus 로고
    • Genomic variation of Trypanosoma cruzi: Involvement of multicopy genes
    • Wagner W, So M. 1990. Genomic variation of Trypanosoma cruzi: involvement of multicopy genes. Infect Immun 58:3217-3224.
    • (1990) Infect Immun , vol.58 , pp. 3217-3224
    • Wagner, W.1    So, M.2
  • 16
    • 84987623914 scopus 로고    scopus 로고
    • Recombination-driven generation of the largest pathogen repository of antigen variants in the protozoan Trypanosoma cruzi
    • Weatherly DB, Peng D, Tarleton RL. 2016. Recombination-driven generation of the largest pathogen repository of antigen variants in the protozoan Trypanosoma cruzi. BMC Genomics 17:729. https://doi.org/10.1186/s12864-016-3037-z.
    • (2016) BMC Genomics , vol.17 , pp. 729
    • Weatherly, D.B.1    Peng, D.2    Tarleton, R.L.3
  • 17
    • 84940887923 scopus 로고    scopus 로고
    • CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment
    • Lander N, Li ZH, Niyogi S, Docampo R. 2015. CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment. mBio 6:e01012. https://doi.org/10.1128/mBio.01012-15.
    • (2015) Mbio , vol.6
    • Lander, N.1    Li, Z.H.2    Niyogi, S.3    Docampo, R.4
  • 19
    • 85022322746 scopus 로고    scopus 로고
    • Different roles of mitochondrial calcium uniporter complex subunits in growth and infectivity of Trypanosoma cruzi
    • Chiurillo MA, Lander N, Bertolini MS, Storey M, Vercesi AE, Docampo R. 2017. Different roles of mitochondrial calcium uniporter complex subunits in growth and infectivity of Trypanosoma cruzi. mBio 8:e00574-17. https://doi.org/10.1128/mBio.00574-17.
    • (2017) Mbio , vol.8 , pp. e00574-e00617
    • Chiurillo, M.A.1    Lander, N.2    Bertolini, M.S.3    Storey, M.4    Vercesi, A.E.5    Docampo, R.6
  • 20
    • 85002157024 scopus 로고    scopus 로고
    • CRISPR/ Cas9-mediated endogenous C-terminal tagging of Trypanosoma cruzi genes reveals the acidocalcisome localization of the inositol 1,4,5-trisphosphate receptor
    • Lander N, Chiurillo MA, Storey M, Vercesi AE, Docampo R. 2016. CRISPR/ Cas9-mediated endogenous C-terminal tagging of Trypanosoma cruzi genes reveals the acidocalcisome localization of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 291:25505-25515. https://doi.org/10.1074/jbc.M116.749655.
    • (2016) J Biol Chem , vol.291 , pp. 25505-25515
    • Lander, N.1    Chiurillo, M.A.2    Storey, M.3    Vercesi, A.E.4    Docampo, R.5
  • 21
    • 84953237699 scopus 로고    scopus 로고
    • Knockdown of inner arm protein IC138 in Trypanosoma brucei causes defective motility and flagellar detachment
    • Wilson CS, Chang AJ, Greene R, Machado S, Parsons MW, Takats TA, Zambetti LJ, Springer AL. 2015. Knockdown of inner arm protein IC138 in Trypanosoma brucei causes defective motility and flagellar detachment. PLoS One 10:e0139579. https://doi.org/10.1371/journal.pone.0139579.
    • (2015) Plos One , vol.10
    • Wilson, C.S.1    Chang, A.J.2    Greene, R.3    Machado, S.4    Parsons, M.W.5    Takats, T.A.6    Zambetti, L.J.7    Springer, A.L.8
  • 22
    • 36749050931 scopus 로고    scopus 로고
    • A repetitive protein essential for the flagellum attachment zone filament structure and function in Trypanosoma brucei
    • Vaughan S, Kohl L, Ngai I, Wheeler RJ, Gull K. 2008. A repetitive protein essential for the flagellum attachment zone filament structure and function in Trypanosoma brucei. Protist 159:127-136. https://doi.org/10.1016/j.protis.2007.08.005.
    • (2008) Protist , vol.159 , pp. 127-136
    • Vaughan, S.1    Kohl, L.2    Ngai, I.3    Wheeler, R.J.4    Gull, K.5
  • 23
    • 55749094547 scopus 로고    scopus 로고
    • KMP-11, a basal body and flagellar protein, is required for cell division in Trypanosoma brucei
    • Li Z, Wang CC. 2008. KMP-11, a basal body and flagellar protein, is required for cell division in Trypanosoma brucei. Eukaryot Cell 7:1941-1950. https://doi.org/10.1128/EC.00249-08.
    • (2008) Eukaryot Cell , vol.7 , pp. 1941-1950
    • Li, Z.1    Wang, C.C.2
  • 24
    • 79953882988 scopus 로고    scopus 로고
    • Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites
    • Hall BS, Bot C, Wilkinson SR. 2011. Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. J Biol Chem 286:13088-13095. https://doi.org/10.1074/jbc.M111.230847.
    • (2011) J Biol Chem , vol.286 , pp. 13088-13095
    • Hall, B.S.1    Bot, C.2    Wilkinson, S.R.3
  • 25
    • 84455170162 scopus 로고    scopus 로고
    • Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation
    • Hall BS, Wilkinson SR. 2012. Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob Agents Chemother 56:115-123. https://doi.org/10.1128/AAC.05135-11.
    • (2012) Antimicrob Agents Chemother , vol.56 , pp. 115-123
    • Hall, B.S.1    Wilkinson, S.R.2
  • 26
    • 77952358375 scopus 로고    scopus 로고
    • Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole
    • Chen CK, Leung SS, Guilbert C, Jacobson MP, McKerrow JH, Podust LM. 2010. Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole. PLoS Negl Trop Dis 4:e651. https://doi.org/10.1371/journal.pntd.0000651.
    • (2010) Plos Negl Trop Dis , vol.4
    • Chen, C.K.1    Leung, S.S.2    Guilbert, C.3    Jacobson, M.P.4    McKerrow, J.H.5    Podust, L.M.6
  • 27
    • 0027158311 scopus 로고
    • Deletion of an immunodominant Trypanosoma cruzi surface glycoprotein disrupts flagellum-cell adhesion
    • Cooper R, de Jesus AR, Cross GA. 1993. Deletion of an immunodominant Trypanosoma cruzi surface glycoprotein disrupts flagellum-cell adhesion. J Cell Biol 122:149-156. https://doi.org/10.1083/jcb.122.1.149.
    • (1993) J Cell Biol , vol.122 , pp. 149-156
    • Cooper, R.1    De Jesus, A.R.2    Cross, G.A.3
  • 30
    • 84903975411 scopus 로고    scopus 로고
    • Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9
    • Shen B, Brown KM, Lee TD, Sibley LD. 2014. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. mBio 5:e01114-14. https://doi.org/10.1128/mBio.01114-14.
    • (2014) Mbio , vol.5 , pp. e01114-e01114
    • Shen, B.1    Brown, K.M.2    Lee, T.D.3    Sibley, L.D.4
  • 32
    • 84905746811 scopus 로고    scopus 로고
    • Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system
    • Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio JJ. 2014. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 32: 819-821. https://doi.org/10.1038/nbt.2925.
    • (2014) Nat Biotechnol , vol.32 , pp. 819-821
    • Ghorbal, M.1    Gorman, M.2    Macpherson, C.R.3    Martins, R.M.4    Scherf, A.5    Lopez-Rubio, J.J.6
  • 36
    • 78951491179 scopus 로고    scopus 로고
    • Genome-wide RNAi screens in African trypanosomes identify the nifurtimox activator NTR and the eflornithine transporter AAT6
    • Baker N, Alsford S, Horn D. 2011. Genome-wide RNAi screens in African trypanosomes identify the nifurtimox activator NTR and the eflornithine transporter AAT6. Mol Biochem Parasitol 176:55-57. https://doi.org/10.1016/j.molbiopara.2010.11.010.
    • (2011) Mol Biochem Parasitol , vol.176 , pp. 55-57
    • Baker, N.1    Alsford, S.2    Horn, D.3
  • 37
    • 84940827347 scopus 로고    scopus 로고
    • CRISPR-Cas9-mediated genome editing in Leishmania donovani
    • Zhang WW, Matlashewski G. 2015. CRISPR-Cas9-mediated genome editing in Leishmania donovani. mBio 6:e00861-15. https://doi.org/10.1128/mBio.00861-15.
    • (2015) Mbio , vol.6 , pp. e00815-e00861
    • Zhang, W.W.1    Matlashewski, G.2
  • 38
    • 85018413228 scopus 로고    scopus 로고
    • A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids
    • Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E. 2017. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R Soc Open Sci 4:170095. https://doi.org/10.1098/rsos.170095.
    • (2017) R Soc Open Sci , vol.4
    • Beneke, T.1    Madden, R.2    Makin, L.3    Valli, J.4    Sunter, J.5    Gluenz, E.6
  • 40
    • 0036500723 scopus 로고    scopus 로고
    • Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii
    • Morrissette NS, Sibley LD. 2002. Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii. J Cell Sci 115: 1017-1025.
    • (2002) J Cell Sci , vol.115 , pp. 1017-1025
    • Morrissette, N.S.1    Sibley, L.D.2
  • 41
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821. https://doi.org/10.1126/science.1225829.
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1    Chylinski, K.2    Fonfara, I.3    Hauer, M.4    Doudna, J.A.5    Charpentier, E.6
  • 42
    • 84874608929 scopus 로고    scopus 로고
    • RNA-guidedediting of bacterial genomes using CRISPR-Cas systems
    • Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guidedediting of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233-239. https://doi.org/10.1038/nbt.2508.
    • (2013) Nat Biotechnol , vol.31 , pp. 233-239
    • Jiang, W.1    Bikard, D.2    Cox, D.3    Zhang, F.4    Marraffini, L.A.5
  • 45
    • 0024948840 scopus 로고
    • Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers
    • Hirumi H, Hirumi K. 1989. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol 75:985-989.
    • (1989) J Parasitol , vol.75 , pp. 985-989
    • Hirumi, H.1    Hirumi, K.2
  • 46
    • 85006340968 scopus 로고    scopus 로고
    • EuPaGDT: A web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens
    • Peng D, Tarleton R. 2015. EuPaGDT: A web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microb Genom 1:e000033. https://doi.org/10.1099/mgen.0.000033.
    • (2015) Microb Genom , vol.1
    • Peng, D.1    Tarleton, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.