메뉴 건너뛰기




Volumn 17, Issue 12, 2017, Pages

Dimension reduction aided hyperspectral image classification with a small-sized training dataset: Experimental comparisons

Author keywords

Feature extraction selection; Hyperspectral image; Image classification; PCA; SVM

Indexed keywords

EXTRACTION; FEATURE EXTRACTION; HYPERSPECTRAL IMAGING; IMAGE CLASSIFICATION; INDEPENDENT COMPONENT ANALYSIS; LEARNING SYSTEMS; PRINCIPAL COMPONENT ANALYSIS; SEMANTICS; SPECTROSCOPY; SUPPORT VECTOR MACHINES;

EID: 85036455040     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s17122726     Document Type: Article
Times cited : (45)

References (41)
  • 1
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232-6251.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 2
    • 85002644909 scopus 로고    scopus 로고
    • Estimation of Winter Wheat Biomass and Yield by Combining the AquaCrop Model and Field Hyperspectral Data
    • Jin, X.; Kumar, L.; Li, Z.; Xu, X.; Yang, G.; Wang, J. Estimation of Winter Wheat Biomass and Yield by Combining the AquaCrop Model and Field Hyperspectral Data. Remote Sens. 2016, 8, 972.
    • (2016) Remote Sens , vol.8 , pp. 972
    • Jin, X.1    Kumar, L.2    Li, Z.3    Xu, X.4    Yang, G.5    Wang, J.6
  • 3
    • 84908530182 scopus 로고    scopus 로고
    • A review of imaging techniques for plant phenotyping
    • Li, L.; Zhang, Q.; Huang, D. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078-20111.
    • (2014) Sensors , vol.14 , pp. 20078-20111
    • Li, L.1    Zhang, Q.2    Huang, D.3
  • 4
    • 85017612753 scopus 로고    scopus 로고
    • Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models
    • Yuan, H.; Yang, G.; Li, C.; Wang, Y.; Liu, J.; Yu, H.; Feng, H.; Xu, B.; Zhao, X.; Yang, X. Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models. Remote Sens. 2017, 9, 309.
    • (2017) Remote Sens. , vol.9 , pp. 309
    • Yuan, H.1    Yang, G.2    Li, C.3    Wang, Y.4    Liu, J.5    Yu, H.6    Feng, H.7    Xu, B.8    Zhao, X.9    Yang, X.10
  • 5
    • 85019393092 scopus 로고    scopus 로고
    • An Improved Combination of Spectral and Spatial Features for Vegetation Classification in Hyperspectral Images
    • Fu, Y.; Zhao, C.; Wang, J.; Jia, X.; Yang, G.; Song, X.; Feng, H. An Improved Combination of Spectral and Spatial Features for Vegetation Classification in Hyperspectral Images. Remote Sens. 2017, 9, 261.
    • (2017) Remote Sens , vol.9 , pp. 261
    • Fu, Y.1    Zhao, C.2    Wang, J.3    Jia, X.4    Yang, G.5    Song, X.6    Feng, H.7
  • 9
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55-63.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , pp. 55-63
    • Hughes, G.1
  • 10
    • 42749086766 scopus 로고    scopus 로고
    • Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem
    • Chi, M.; Feng, R.; Bruzzone, L. Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem. Adv. Space Res. 2008, 41, 1793-1799.
    • (2008) Adv. Space Res , vol.41 , pp. 1793-1799
    • Chi, M.1    Feng, R.2    Bruzzone, L.3
  • 12
    • 33744719449 scopus 로고    scopus 로고
    • Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis
    • Wang, J.; Chang, C.I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1586-1600.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , pp. 1586-1600
    • Wang, J.1    Chang, C.I.2
  • 13
    • 84874545698 scopus 로고    scopus 로고
    • Feature mining for hyperspectral image classification
    • Jia, X.; Kuo, B.C.; Crawford, M.M. Feature mining for hyperspectral image classification. Proc. IEEE 2013, 101, 676-697.
    • (2013) Proc. IEEE , vol.101 , pp. 676-697
    • Jia, X.1    Kuo, B.C.2    Crawford, M.M.3
  • 14
    • 0035391738 scopus 로고    scopus 로고
    • Best-bases feature extraction algorithms for classification of hyperspectral data
    • Kumar, S.; Ghosh, J.; Crawford, M.M. Best-bases feature extraction algorithms for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1368-1379.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 15
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157-1182.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 16
    • 84906307287 scopus 로고    scopus 로고
    • Hyperspectral band selection by multitask sparsity pursuit
    • Yuan, Y.; Zhu, G.; Wang, Q. Hyperspectral band selection by multitask sparsity pursuit. IEEE Trans. Geosci. Remote Sens. 2015, 53, 631-644.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 631-644
    • Yuan, Y.1    Zhu, G.2    Wang, Q.3
  • 18
    • 84955120745 scopus 로고    scopus 로고
    • Multi-stage feature selection based intelligent classifier for classification of incipient stage fire in building
    • Andrew, A.M.; Zakaria, A.; Mad Saad, S.; Md Shakaff, A.Y. Multi-stage feature selection based intelligent classifier for classification of incipient stage fire in building. Sensors 2016, 16, 31.
    • (2016) Sensors , vol.16 , pp. 31
    • Andrew, A.M.1    Zakaria, A.2    Mad Saad, S.3    Md Shakaff, A.Y.4
  • 20
    • 84888291350 scopus 로고    scopus 로고
    • Novel approach to hyperspectral band selection based on spectral shape similarity analysis and fast branch and bound search
    • Li, S.; Qiu, J.; Yang, X.; Liu, H.; Wan, D.; Zhu, Y. A novel approach to hyperspectral band selection based on spectral shape similarity analysis and fast branch and bound search. Eng. Appl. Artif. Intell. 2014, 27, 241-250.
    • (2014) Eng. Appl. Artif. Intell , vol.27 , pp. 241-250
    • Li, S.1    Qiu, J.2    Yang, X.3    Liu, H.4    Wan, D.5    Zhu, Y.A.6
  • 21
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46, 389-422.
    • (2002) Mach. Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 22
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • Pal, M.; Foody, G.M. Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens.2010, 48, 2297-2307.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 23
    • 33947505577 scopus 로고    scopus 로고
    • Comparison between several feature extraction/classification methods for mapping complicated agricultural land use patches using airborne hyperspectral data
    • Lu, S.; Oki, K.; Shimizu, Y.; Omasa, K. Comparison between several feature extraction/classification methods for mapping complicated agricultural land use patches using airborne hyperspectral data. Int. J. Remote Sens. 2007, 28, 963-984.
    • (2007) Int. J. Remote Sens , vol.28 , pp. 963-984
    • Lu, S.1    Oki, K.2    Shimizu, Y.3    Omasa, K.4
  • 25
    • 84896314121 scopus 로고    scopus 로고
    • Spectral—Spatial hyperspectral image classification with edge-preserving filtering
    • Kang, X.; Li, S.; Benediktsson, J.A. Spectral—Spatial hyperspectral image classification with edge-preserving filtering.IEEE Trans. Geosci. Remote Sens. 2014, 52, 2666-2677.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 2666-2677
    • Kang, X.1    Li, S.2    Benediktsson, J.A.3
  • 28
    • 85019369316 scopus 로고    scopus 로고
    • Optimizing Multiple Kernel Learning for the Classification of UAV Data
    • Gevaert, C.M.; Persello, C.; Vosselman, G. Optimizing Multiple Kernel Learning for the Classification of UAV Data. Remote Sens. 2016, 8, 1025.
    • (2016) Remote Sens. , vol.8 , pp. 1025
    • Gevaert, C.M.1    Persello, C.2    Vosselman, G.3
  • 29
    • 84930339737 scopus 로고    scopus 로고
    • accessed on 25 June 2017
    • Rifkin, R. MIT—Multiclass Classification. Available online: http://www.mit.edu/~9.520/spring09/Classes/multiclass.pdf(accessed on 25 June 2017).
    • MIT—Multiclass Classification
    • Rifkin, R.1
  • 30
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R.; John, G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97, 273-324.
    • (1997) Artif. Intell , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 32
    • 84914813506 scopus 로고
    • On the effectiveness of receptors in recognition systems
    • Marill, T.; Green, D. On the effectiveness of receptors in recognition systems. IEEE Trans. Inf. Theory 1963, 9, 11-17.
    • (1963) IEEE Trans. Inf. Theory , vol.9 , pp. 11-17
    • Marill, T.1    Green, D.2
  • 36
    • 84908507721 scopus 로고    scopus 로고
    • Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits
    • Pohjalainen, J.; Räsänen, O.; Kadioglu, S. Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits. Comput. Speech Lang. 2015, 29, 145-171.
    • (2015) Comput. Speech Lang , vol.29 , pp. 145-171
    • Pohjalainen, J.1    Räsänen, O.2    Kadioglu, S.3
  • 37
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226-1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 39
    • 78650808526 scopus 로고    scopus 로고
    • Pattern recognition
    • Bishop, C.M. Pattern recognition. Mach. Learn. 2006, 128, 1-58.
    • (2006) Mach. Learn , vol.128 , pp. 1-58
    • Bishop, C.M.1
  • 41
    • 1942424158 scopus 로고    scopus 로고
    • Principal component analysis for hyperspectral image classification
    • Rodarmel, C.; Shan, J. Principal component analysis for hyperspectral image classification. Surv. Land Inf. Sci. 2002, 62, 115-122.
    • (2002) Surv. Land Inf. Sci , vol.62 , pp. 115-122
    • Rodarmel, C.1    Shan, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.