-
1
-
-
84978805819
-
Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
-
Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232-6251.
-
(2016)
IEEE Trans. Geosci. Remote Sens
, vol.54
, pp. 6232-6251
-
-
Chen, Y.1
Jiang, H.2
Li, C.3
Jia, X.4
Ghamisi, P.5
-
2
-
-
85002644909
-
Estimation of Winter Wheat Biomass and Yield by Combining the AquaCrop Model and Field Hyperspectral Data
-
Jin, X.; Kumar, L.; Li, Z.; Xu, X.; Yang, G.; Wang, J. Estimation of Winter Wheat Biomass and Yield by Combining the AquaCrop Model and Field Hyperspectral Data. Remote Sens. 2016, 8, 972.
-
(2016)
Remote Sens
, vol.8
, pp. 972
-
-
Jin, X.1
Kumar, L.2
Li, Z.3
Xu, X.4
Yang, G.5
Wang, J.6
-
3
-
-
84908530182
-
A review of imaging techniques for plant phenotyping
-
Li, L.; Zhang, Q.; Huang, D. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078-20111.
-
(2014)
Sensors
, vol.14
, pp. 20078-20111
-
-
Li, L.1
Zhang, Q.2
Huang, D.3
-
4
-
-
85017612753
-
Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models
-
Yuan, H.; Yang, G.; Li, C.; Wang, Y.; Liu, J.; Yu, H.; Feng, H.; Xu, B.; Zhao, X.; Yang, X. Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models. Remote Sens. 2017, 9, 309.
-
(2017)
Remote Sens.
, vol.9
, pp. 309
-
-
Yuan, H.1
Yang, G.2
Li, C.3
Wang, Y.4
Liu, J.5
Yu, H.6
Feng, H.7
Xu, B.8
Zhao, X.9
Yang, X.10
-
5
-
-
85019393092
-
An Improved Combination of Spectral and Spatial Features for Vegetation Classification in Hyperspectral Images
-
Fu, Y.; Zhao, C.; Wang, J.; Jia, X.; Yang, G.; Song, X.; Feng, H. An Improved Combination of Spectral and Spatial Features for Vegetation Classification in Hyperspectral Images. Remote Sens. 2017, 9, 261.
-
(2017)
Remote Sens
, vol.9
, pp. 261
-
-
Fu, Y.1
Zhao, C.2
Wang, J.3
Jia, X.4
Yang, G.5
Song, X.6
Feng, H.7
-
6
-
-
85019363955
-
Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging
-
Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.N, et al. Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sens. 2017, 9, 185.
-
(2017)
Remote Sens
, vol.9
, pp. 185
-
-
Nevalainen, O.1
Honkavaara, E.2
Tuominen, S.3
Viljanen, N.4
Hakala, T.5
Yu, X.6
Hyyppä, J.7
Saari, H.8
Pölönen, I.9
Imai, N.N.10
-
7
-
-
85016188297
-
Advanced Supervised Spectral Classifiers for Hyperspectral Images: A Review
-
Ghamisi, P.; Plaza, J.; Chen, Y.; Li, J.; Plaza, A. Advanced Supervised Spectral Classifiers for Hyperspectral Images: A Review. IEEE Geosci. Remote Sens. Mag. 2017, 8-32.
-
(2017)
IEEE Geosci. Remote Sens. Mag
, pp. 8-32
-
-
Ghamisi, P.1
Plaza, J.2
Chen, Y.3
Li, J.4
Plaza, A.5
-
8
-
-
84899967600
-
Advances in spectral-spatial classification of hyperspectral images
-
Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 2013, 101, 652-675.
-
(2013)
Proc. IEEE
, vol.101
, pp. 652-675
-
-
Fauvel, M.1
Tarabalka, Y.2
Benediktsson, J.A.3
Chanussot, J.4
Tilton, J.C.5
-
9
-
-
77957741951
-
On the mean accuracy of statistical pattern recognizers
-
Hughes, G. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55-63.
-
(1968)
IEEE Trans. Inf. Theory
, vol.14
, pp. 55-63
-
-
Hughes, G.1
-
10
-
-
42749086766
-
Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem
-
Chi, M.; Feng, R.; Bruzzone, L. Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem. Adv. Space Res. 2008, 41, 1793-1799.
-
(2008)
Adv. Space Res
, vol.41
, pp. 1793-1799
-
-
Chi, M.1
Feng, R.2
Bruzzone, L.3
-
11
-
-
79951950272
-
Support vector machines in remote sensing: A review
-
Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247-259.
-
(2011)
ISPRS J. Photogramm. Remote Sens
, vol.66
, pp. 247-259
-
-
Mountrakis, G.1
Im, J.2
Ogole, C.3
-
12
-
-
33744719449
-
Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis
-
Wang, J.; Chang, C.I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1586-1600.
-
(2006)
IEEE Trans. Geosci. Remote Sens
, vol.44
, pp. 1586-1600
-
-
Wang, J.1
Chang, C.I.2
-
13
-
-
84874545698
-
Feature mining for hyperspectral image classification
-
Jia, X.; Kuo, B.C.; Crawford, M.M. Feature mining for hyperspectral image classification. Proc. IEEE 2013, 101, 676-697.
-
(2013)
Proc. IEEE
, vol.101
, pp. 676-697
-
-
Jia, X.1
Kuo, B.C.2
Crawford, M.M.3
-
14
-
-
0035391738
-
Best-bases feature extraction algorithms for classification of hyperspectral data
-
Kumar, S.; Ghosh, J.; Crawford, M.M. Best-bases feature extraction algorithms for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1368-1379.
-
(2001)
IEEE Trans. Geosci. Remote Sens
, vol.39
, pp. 1368-1379
-
-
Kumar, S.1
Ghosh, J.2
Crawford, M.M.3
-
15
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157-1182.
-
(2003)
J. Mach. Learn. Res
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
16
-
-
84906307287
-
Hyperspectral band selection by multitask sparsity pursuit
-
Yuan, Y.; Zhu, G.; Wang, Q. Hyperspectral band selection by multitask sparsity pursuit. IEEE Trans. Geosci. Remote Sens. 2015, 53, 631-644.
-
(2015)
IEEE Trans. Geosci. Remote Sens
, vol.53
, pp. 631-644
-
-
Yuan, Y.1
Zhu, G.2
Wang, Q.3
-
18
-
-
84955120745
-
Multi-stage feature selection based intelligent classifier for classification of incipient stage fire in building
-
Andrew, A.M.; Zakaria, A.; Mad Saad, S.; Md Shakaff, A.Y. Multi-stage feature selection based intelligent classifier for classification of incipient stage fire in building. Sensors 2016, 16, 31.
-
(2016)
Sensors
, vol.16
, pp. 31
-
-
Andrew, A.M.1
Zakaria, A.2
Mad Saad, S.3
Md Shakaff, A.Y.4
-
20
-
-
84888291350
-
Novel approach to hyperspectral band selection based on spectral shape similarity analysis and fast branch and bound search
-
Li, S.; Qiu, J.; Yang, X.; Liu, H.; Wan, D.; Zhu, Y. A novel approach to hyperspectral band selection based on spectral shape similarity analysis and fast branch and bound search. Eng. Appl. Artif. Intell. 2014, 27, 241-250.
-
(2014)
Eng. Appl. Artif. Intell
, vol.27
, pp. 241-250
-
-
Li, S.1
Qiu, J.2
Yang, X.3
Liu, H.4
Wan, D.5
Zhu, Y.A.6
-
21
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46, 389-422.
-
(2002)
Mach. Learn
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
22
-
-
77951295936
-
Feature selection for classification of hyperspectral data by SVM
-
Pal, M.; Foody, G.M. Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens.2010, 48, 2297-2307.
-
(2010)
IEEE Trans. Geosci. Remote Sens
, vol.48
, pp. 2297-2307
-
-
Pal, M.1
Foody, G.M.2
-
23
-
-
33947505577
-
Comparison between several feature extraction/classification methods for mapping complicated agricultural land use patches using airborne hyperspectral data
-
Lu, S.; Oki, K.; Shimizu, Y.; Omasa, K. Comparison between several feature extraction/classification methods for mapping complicated agricultural land use patches using airborne hyperspectral data. Int. J. Remote Sens. 2007, 28, 963-984.
-
(2007)
Int. J. Remote Sens
, vol.28
, pp. 963-984
-
-
Lu, S.1
Oki, K.2
Shimizu, Y.3
Omasa, K.4
-
24
-
-
67650436064
-
Recent advances in techniques for hyperspectral image processing
-
Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A, et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ.2009, 113, S110-S122.
-
(2009)
Remote Sens. Environ
, vol.113
, pp. S110-S122
-
-
Plaza, A.1
Benediktsson, J.A.2
Boardman, J.W.3
Brazile, J.4
Bruzzone, L.5
Camps-Valls, G.6
Chanussot, J.7
Fauvel, M.8
Gamba, P.9
Gualtieri, A.10
-
25
-
-
84896314121
-
Spectral—Spatial hyperspectral image classification with edge-preserving filtering
-
Kang, X.; Li, S.; Benediktsson, J.A. Spectral—Spatial hyperspectral image classification with edge-preserving filtering.IEEE Trans. Geosci. Remote Sens. 2014, 52, 2666-2677.
-
(2014)
IEEE Trans. Geosci. Remote Sens
, vol.52
, pp. 2666-2677
-
-
Kang, X.1
Li, S.2
Benediktsson, J.A.3
-
26
-
-
0026966646
-
Training algorithm for optimal margin classifiers
-
Pittsburgh, PA, USA, 27-29 July
-
Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27-29 July 1992; pp 144-152.
-
(1992)
Proceedings of the Fifth Annual Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.3
-
28
-
-
85019369316
-
Optimizing Multiple Kernel Learning for the Classification of UAV Data
-
Gevaert, C.M.; Persello, C.; Vosselman, G. Optimizing Multiple Kernel Learning for the Classification of UAV Data. Remote Sens. 2016, 8, 1025.
-
(2016)
Remote Sens.
, vol.8
, pp. 1025
-
-
Gevaert, C.M.1
Persello, C.2
Vosselman, G.3
-
29
-
-
84930339737
-
-
accessed on 25 June 2017
-
Rifkin, R. MIT—Multiclass Classification. Available online: http://www.mit.edu/~9.520/spring09/Classes/multiclass.pdf(accessed on 25 June 2017).
-
MIT—Multiclass Classification
-
-
Rifkin, R.1
-
30
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi, R.; John, G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97, 273-324.
-
(1997)
Artif. Intell
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
32
-
-
84914813506
-
On the effectiveness of receptors in recognition systems
-
Marill, T.; Green, D. On the effectiveness of receptors in recognition systems. IEEE Trans. Inf. Theory 1963, 9, 11-17.
-
(1963)
IEEE Trans. Inf. Theory
, vol.9
, pp. 11-17
-
-
Marill, T.1
Green, D.2
-
36
-
-
84908507721
-
Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits
-
Pohjalainen, J.; Räsänen, O.; Kadioglu, S. Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits. Comput. Speech Lang. 2015, 29, 145-171.
-
(2015)
Comput. Speech Lang
, vol.29
, pp. 145-171
-
-
Pohjalainen, J.1
Räsänen, O.2
Kadioglu, S.3
-
37
-
-
24344458137
-
Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
-
Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226-1238.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
38
-
-
84956689194
-
Kernel principal component analysis
-
Lausanne, Switzerland, 8-10 October 1997; Springer: New York, NY, USA
-
Schölkopf, B.; Smola, A.; Müller, K.R. Kernel principal component analysis. In Proceedings of the International Conference on Artificial Neural Networks, Lausanne, Switzerland, 8-10 October 1997; Springer: New York, NY, USA, 1997; pp 583-588.
-
(1997)
Proceedings of the International Conference on Artificial Neural Networks
, pp. 583-588
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.R.3
-
39
-
-
78650808526
-
Pattern recognition
-
Bishop, C.M. Pattern recognition. Mach. Learn. 2006, 128, 1-58.
-
(2006)
Mach. Learn
, vol.128
, pp. 1-58
-
-
Bishop, C.M.1
-
41
-
-
1942424158
-
Principal component analysis for hyperspectral image classification
-
Rodarmel, C.; Shan, J. Principal component analysis for hyperspectral image classification. Surv. Land Inf. Sci. 2002, 62, 115-122.
-
(2002)
Surv. Land Inf. Sci
, vol.62
, pp. 115-122
-
-
Rodarmel, C.1
Shan, J.2
|