메뉴 건너뛰기




Volumn 9, Issue 3, 2017, Pages

An improved combination of spectral and spatial features for vegetation classification in hyperspectral images

Author keywords

Feature selection; Gabor features; Hyperspectral image; Scatter matrix based class separability; Vegetation classification

Indexed keywords

AGRICULTURAL MACHINERY; AGRICULTURE; FEATURE EXTRACTION; HYPERSPECTRAL IMAGING; IMAGE CLASSIFICATION; IMAGE RETRIEVAL; INDEPENDENT COMPONENT ANALYSIS; SPECTROSCOPY; VEGETATION;

EID: 85019393092     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs9030261     Document Type: Article
Times cited : (31)

References (36)
  • 2
    • 0032209130 scopus 로고    scopus 로고
    • Hyperspectral imaging and stress mapping in agriculture: A case study on wheat in Beauce (France)
    • Lelong, C.C., Pinet, P.C., Poilvé, H. Hyperspectral imaging and stress mapping in agriculture: A case study on wheat in Beauce (France). Remote Sens. Environ. 1998, 66, 179-191.
    • (1998) Remote Sens. Environ. , vol.66 , pp. 179-191
    • Lelong, C.C.1    Pinet, P.C.2    Poilvé, H.3
  • 3
    • 2942724627 scopus 로고    scopus 로고
    • Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications
    • Thenkabail, P.S., Enclona, E.A., Ashton, M.S., Van Der Meer, B. Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sens. Environ. 2004, 91, 354-376.
    • (2004) Remote Sens. Environ. , vol.91 , pp. 354-376
    • Thenkabail, P.S.1    Enclona, E.A.2    Ashton, M.S.3    Van Der Meer, B.4
  • 4
    • 35948985621 scopus 로고    scopus 로고
    • Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging
    • Huang, W., Lamb, D.W., Niu, Z., Zhang, Y., Liu, L., Wang, J. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 2007, 8, 187-197.
    • (2007) Precis. Agric. , vol.8 , pp. 187-197
    • Huang, W.1    Lamb, D.W.2    Niu, Z.3    Zhang, Y.4    Liu, L.5    Wang, J.6
  • 5
    • 50349103029 scopus 로고    scopus 로고
    • Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes
    • Mahesh, S., Manickavasagan, A., Jayas, D.S., Paliwal, J., White, N.D.G. Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes. Biosyst. Eng. 2008, 101, 50-57.
    • (2008) Biosyst. Eng. , vol.101 , pp. 50-57
    • Mahesh, S.1    Manickavasagan, A.2    Jayas, D.S.3    Paliwal, J.4    White, N.D.G.5
  • 6
    • 48749108611 scopus 로고    scopus 로고
    • A fixed-threshold approach to generate high-resolution vegetation maps for IKONOS imagery
    • Cheng,W.C., Chang, J.C., Chang, C.P., Su, Y., Tu, T.M. A fixed-threshold approach to generate high-resolution vegetation maps for IKONOS imagery. Sensors 2008, 8, 4308-4317.
    • (2008) Sensors , vol.8 , pp. 4308-4317
    • Cheng, W.C.1    Chang, J.C.2    Chang, C.P.3    Su, Y.4    Tu, T.M.5
  • 7
    • 65049087461 scopus 로고    scopus 로고
    • A new vegetation enhancement/extraction technique for IKONOS and QuickBird imagery
    • Tu, T.M., Lu, H.T., Chang, Y.C., Chang, J.C., Chang, C.P. A new vegetation enhancement/extraction technique for IKONOS and QuickBird imagery. IEEE Geosci. Remote Sens. 2009, 6, 349-353.
    • (2009) IEEE Geosci. Remote Sens. , vol.6 , pp. 349-353
    • Tu, T.M.1    Lu, H.T.2    Chang, Y.C.3    Chang, J.C.4    Chang, C.P.5
  • 8
    • 14644435059 scopus 로고    scopus 로고
    • Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations
    • Plaza, A., Martinez, P., Plaza, J., Pérez, R. Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Trans. Geosci. Remote Sens. 2005, 43, 466-479.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 466-479
    • Plaza, A.1    Martinez, P.2    Plaza, J.3    Pérez, R.4
  • 10
    • 84874545698 scopus 로고    scopus 로고
    • Feature mining for hyperspectral image classification
    • Jia, X., Kuo, B.C., Crawford, M.M. Feature mining for hyperspectral image classification. Proc. IEEE 2013, 101, 676-697.
    • (2013) Proc. IEEE , vol.101 , pp. 676-697
    • Jia, X.1    Kuo, B.C.2    Crawford, M.M.3
  • 11
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • Harsanyi, J.C., Chang, C.I. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 1994, 32, 779-785.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.I.2
  • 12
    • 84864409930 scopus 로고    scopus 로고
    • Multinomial logistic regression-based feature selection for hyperspectral data
    • Pal, M. Multinomial logistic regression-based feature selection for hyperspectral data. Int. J. Appl. Earth Obs. Geoinform. 2012, 14, 214-220.
    • (2012) Int. J. Appl. Earth Obs. Geoinform. , vol.14 , pp. 214-220
    • Pal, M.1
  • 13
    • 84896399208 scopus 로고    scopus 로고
    • Subspace detection using a mutual information measure for hyperspectral image classification
    • Hossain, M.A., Jia, X., Pickering, M. Subspace detection using a mutual information measure for hyperspectral image classification. IEEE Geosci. Remote Sens. 2014, 11, 424-428.
    • (2014) IEEE Geosci. Remote Sens. , vol.11 , pp. 424-428
    • Hossain, M.A.1    Jia, X.2    Pickering, M.3
  • 14
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, H., Long, F., Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226-1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 15
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
    • Brown, G., Pocock, A., Zhao, M.J., Luján, M. Conditional likelihood maximisation: A unifying framework for information theoretic feature selection. J. Mach. Learn Res. 2012, 13, 27-66.
    • (2012) J. Mach. Learn Res. , vol.13 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.J.3    Luján, M.4
  • 16
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • Fleuret, F. Fast binary feature selection with conditional mutual information. J. Mach. Learn Res. 2004, 5, 1531-1555.
    • (2004) J. Mach. Learn Res. , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 17
    • 47049102021 scopus 로고    scopus 로고
    • Information-theoretic feature selection in microarray data using variable complementarity
    • Meyer, P.E., Schretter, C., Bontempi, G. Information-theoretic feature selection in microarray data using variable complementarity. IEEE J. Sel. Top. Signal Process. 2008, 2, 261-274.
    • (2008) IEEE J. Sel. Top. Signal Process. , vol.2 , pp. 261-274
    • Meyer, P.E.1    Schretter, C.2    Bontempi, G.3
  • 19
    • 48049087439 scopus 로고    scopus 로고
    • Feature selection with kernel class separability
    • Wang, L. Feature selection with kernel class separability. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1534-1546.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , pp. 1534-1546
    • Wang, L.1
  • 20
    • 77951937407 scopus 로고    scopus 로고
    • Feature selection with redundancy-constrained class separability
    • Zhou, L.,Wang, L., Shen, C. Feature selection with redundancy-constrained class separability. IEEE Trans. Neural Netw. 2010, 21, 853-858.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , pp. 853-858
    • Zhou, L.1    Wang, L.2    Shen, C.3
  • 22
    • 16444366244 scopus 로고    scopus 로고
    • Integration of spatial and spectral information by means of unsupervised extraction and classification for homogenous objects applied to multispectral and hyperspectral data
    • Jiménez, L.O., Rivera-Medina, J.L., Rodríguez-Díaz, E., Arzuaga-Cruz, E., Ramírez-Vélez, M. Integration of spatial and spectral information by means of unsupervised extraction and classification for homogenous objects applied to multispectral and hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 844-851.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 844-851
    • Jiménez, L.O.1    Rivera-Medina, J.L.2    Rodríguez-Díaz, E.3    Arzuaga-Cruz, E.4    Ramírez-Vélez, M.5
  • 23
    • 78049303525 scopus 로고    scopus 로고
    • Decision-level fusion of spectral reflectance and derivative information for robust hyperspectral land cover classification
    • Kalluri, H.R., Prasad, S., Bruce, L.M. Decision-level fusion of spectral reflectance and derivative information for robust hyperspectral land cover classification. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4047-4058.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , pp. 4047-4058
    • Kalluri, H.R.1    Prasad, S.2    Bruce, L.M.3
  • 24
    • 80052087210 scopus 로고    scopus 로고
    • On combining multiple features for hyperspectral remote sensing image classification
    • Zhang, L., Zhang, L., Tao, D., Huang, X. On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 879-893.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 879-893
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 25
    • 80052740627 scopus 로고    scopus 로고
    • A spatial-spectral kernel-based approach for the classification of remote-sensing images
    • Fauvel, M., Chanussot, J., Benediktsson, J.A. A spatial-spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognit. 2012, 45, 381-392.
    • (2012) Pattern Recognit. , vol.45 , pp. 381-392
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 26
    • 0024053929 scopus 로고
    • Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression
    • Daugman, J.G. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans. Acoust. Speech. Signal Process. 1988, 36, 1169-1179.
    • (1988) IEEE Trans. Acoust. Speech. Signal Process. , vol.36 , pp. 1169-1179
    • Daugman, J.G.1
  • 27
    • 0035391738 scopus 로고    scopus 로고
    • Best-bases feature extraction algorithms for classification of hyperspectral data
    • Kumar, S., Ghosh, J., Crawford, M.M. Best-bases feature extraction algorithms for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1368-1379.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 28
    • 80051735881 scopus 로고    scopus 로고
    • Using class-based feature selection for the classification of hyperspectral data
    • Maghsoudi, Y., Valadan Zoej, M.J., Collins, M. Using class-based feature selection for the classification of hyperspectral data. INT. J. Remote Sens. 2011, 32, 4311-4326.
    • (2011) INT. J. Remote Sens. , vol.32 , pp. 4311-4326
    • Maghsoudi, Y.1    Valadan Zoej, M.J.2    Collins, M.3
  • 31
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480-491.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 32
    • 85019370839 scopus 로고    scopus 로고
    • (accessed on 20 March 2014).
    • D. A. Landgrebe. Available online: https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html (accessed on 20 March 2014).
    • Landgrebe, D.A.1
  • 33
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Tarabalka, Y., Benediktsson, J.A., Chanussot, J. Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2973-2987.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 35
    • 84907457074 scopus 로고    scopus 로고
    • A multichannel gray level co-occurrence matrix for multi/hyperspectral image texture representation
    • Huang, X., Liu, X., Zhang, L. A multichannel gray level co-occurrence matrix for multi/hyperspectral image texture representation. Remote Sens. 2014, 6, 8424-8445.
    • (2014) Remote Sens. , vol.6 , pp. 8424-8445
    • Huang, X.1    Liu, X.2    Zhang, L.3
  • 36
    • 2642530204 scopus 로고    scopus 로고
    • Nonparametric weighted feature extraction for classification
    • Kuo, B.C., Landgrebe, D.A. Nonparametric weighted feature extraction for classification. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1096-1105.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , pp. 1096-1105
    • Kuo, B.C.1    Landgrebe, D.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.