메뉴 건너뛰기




Volumn 27, Issue , 2014, Pages 241-250

A novel approach to hyperspectral band selection based on spectral shape similarity analysis and fast branch and bound search

Author keywords

Branch and bound search; Conditional mutual information; Feature selection; Hyperspectral remote sensing; Key point of time series; Spectral clustering

Indexed keywords

BRANCH AND BOUND SEARCH; CONDITIONAL MUTUAL INFORMATION; HYPERSPECTRAL REMOTE SENSING; KEYPOINTS; SPECTRAL CLUSTERING;

EID: 84888291350     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2013.07.010     Document Type: Article
Times cited : (61)

References (33)
  • 2
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • Y. Bazi, and F. Melgani Toward an optimal SVM classification system for hyperspectral remote sensing images IEEE Transactions on Geoscience and Remote Sensing 44 11 2006 3374 3385
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.11 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 4
    • 79955524409 scopus 로고    scopus 로고
    • BandClust: An unsupervised band reduction method for hyperspectral remote sensing
    • Claude Cariou, Kacem Chehdi, and Steven Le Moan BandClust: an unsupervised band reduction method for hyperspectral remote sensing IEEE Geoscience and Remote Sensing Letters 8 3 2011 565 569
    • (2011) IEEE Geoscience and Remote Sensing Letters , vol.8 , Issue.3 , pp. 565-569
    • Cariou, C.1    Chehdi, K.2    Le Moan, S.3
  • 7
  • 8
    • 79953819019 scopus 로고    scopus 로고
    • Unsupervised feature selection
    • Huan Liu, H. Motoda, (Eds.) CRC Press Boca Raton, FL, USA
    • J.G. Dy Unsupervised feature selection Huan Liu, H. Motoda, Computational Methods of Feature Selection (Eds.) 2008 CRC Press Boca Raton, FL, USA
    • (2008) Computational Methods of Feature Selection
    • Dy, J.G.1
  • 9
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • G.M. Foody Thematic map comparison: evaluating the statistical significance of differences in classification accuracy Photogrammetric Engineering and Remote Sensing 70 2004 627 633
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 10
    • 38349181507 scopus 로고    scopus 로고
    • A fast separability-based feature-selection method for high-dimensional remotely sensed image classification
    • B. Guo, R.I. Damper, and S.R. Gunn A fast separability-based feature-selection method for high-dimensional remotely sensed image classification Pattern Recognition 41 5 2008 1653 1662
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1653-1662
    • Guo, B.1    Damper, R.I.2    Gunn, S.R.3
  • 11
    • 24044492227 scopus 로고    scopus 로고
    • Bigvat: Visual assessment of cluster tendency for large data sets
    • J. Huband, J.C. Bezdek, and R. Hathaway bigvat: visual assessment of cluster tendency for large data sets Pattern Recognition 38 11 2005 1875 1886
    • (2005) Pattern Recognition , vol.38 , Issue.11 , pp. 1875-1886
    • Huband, J.1    Bezdek, J.C.2    Hathaway, R.3
  • 12
    • 18844367208 scopus 로고    scopus 로고
    • Band selection based on feature weighting for classification of hyperspectral data
    • R. Huang, and M. He Band selection based on feature weighting for classification of hyperspectral data IEEE Transactions on Geoscience and Remote Sensing Letters 2 2 2005 156 159
    • (2005) IEEE Transactions on Geoscience and Remote Sensing Letters , vol.2 , Issue.2 , pp. 156-159
    • Huang, R.1    He, M.2
  • 15
    • 77957990796 scopus 로고    scopus 로고
    • An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine
    • S. Li, H. Wu, D. Wan, and J. Zhu An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine Knowledge-based Systems 24 1 2011 40 48
    • (2011) Knowledge-based Systems , vol.24 , Issue.1 , pp. 40-48
    • Li, S.1    Wu, H.2    Wan, D.3    Zhu, J.4
  • 18
    • 34250815597 scopus 로고    scopus 로고
    • Adaptive branch and bound algorithm for selecting optimal features
    • S. Nakariyakul, and D.P. Casasent Adaptive branch and bound algorithm for selecting optimal features Pattern Recognition Letters 28 12 2007 1415 1427
    • (2007) Pattern Recognition Letters , vol.28 , Issue.12 , pp. 1415-1427
    • Nakariyakul, S.1    Casasent, D.P.2
  • 20
    • 38449109775 scopus 로고    scopus 로고
    • Conditional mutual information based feature selection for classification task. CIARP 2007
    • J. Novovicova, P. Somol, and M. Haindl Conditional mutual information based feature selection for classification task. CIARP 2007 LNCS 4756 2007 417 426
    • (2007) LNCS , vol.4756 , pp. 417-426
    • Novovicova, J.1    Somol, P.2    Haindl, M.3
  • 22
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, and C. Ding Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy IEEE Transactions on Pattern Analysis and Machine Intelligence 27 8 2005 1226 1238
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 26
    • 0035391615 scopus 로고    scopus 로고
    • A new search algorithm for feature selection in hyperspectral remote sensing images
    • S.B. Serpico, and L. Bruzzone A new search algorithm for feature selection in hyperspectral remote sensing images IEEE Transactions on Geoscience and Remote Sensing 39 7 2001 1360 1367
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.7 , pp. 1360-1367
    • Serpico, S.B.1    Bruzzone, L.2
  • 27
    • 33846636871 scopus 로고    scopus 로고
    • Extraction of spectral channels from hyperspectral images for classification purposes
    • S.B. Serpico, and G. Moser Extraction of spectral channels from hyperspectral images for classification purposes IEEE Transactions on Geoscience and Remote Sensing 45 2 2007 484 495
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.2 , pp. 484-495
    • Serpico, S.B.1    Moser, G.2
  • 29
    • 84878849221 scopus 로고    scopus 로고
    • Semi-supervised dimensionality reduction using orthogonal projection divergence-based clustering for hyperspectral imagery
    • H. Su, P. Du, and Q. Du Semi-supervised dimensionality reduction using orthogonal projection divergence-based clustering for hyperspectral imagery Optical Engineering 51 2012 1117151 1117158
    • (2012) Optical Engineering , vol.51 , pp. 1117151-1117158
    • Su, H.1    Du, P.2    Du, Q.3
  • 30
    • 33845719429 scopus 로고    scopus 로고
    • Selecting the optimal classification bands based on rough sets
    • L. Sun, and W. Gao Selecting the optimal classification bands based on rough sets Pattern Recognition and Artificial Intelligence 13 2000 181 186
    • (2000) Pattern Recognition and Artificial Intelligence , vol.13 , pp. 181-186
    • Sun, L.1    Gao, W.2
  • 31
    • 21844478499 scopus 로고    scopus 로고
    • Band selection method based on combination of support vector machines and subspatial partition
    • L. Wang, Y. Gu, and Y. Zhang Band selection method based on combination of support vector machines and subspatial partition Systems Engineering and Electronics 27 2005 974 977
    • (2005) Systems Engineering and Electronics , vol.27 , pp. 974-977
    • Wang, L.1    Gu, Y.2    Zhang, Y.3
  • 33
    • 37449005949 scopus 로고    scopus 로고
    • Trend feature extraction method based on important points in time series
    • Q. Zhou, and T. Wu Trend feature extraction method based on important points in time series Journal of Zhejiang University (Engineering Science) 41 11 2007 1782 1787
    • (2007) Journal of Zhejiang University (Engineering Science) , vol.41 , Issue.11 , pp. 1782-1787
    • Zhou, Q.1    Wu, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.