메뉴 건너뛰기




Volumn 9, Issue 4, 2017, Pages

Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models

Author keywords

Artificial neural networks; Hyperspectral remote sensing; LAI retrieval; Random forests; Sampling method; Support vector machine

Indexed keywords

DECISION TREES; LEAST SQUARES APPROXIMATIONS; NEURAL NETWORKS; PRINCIPAL COMPONENT ANALYSIS; REGRESSION ANALYSIS; REMOTE SENSING; SUPPORT VECTOR MACHINES; UNMANNED AERIAL VEHICLES (UAV);

EID: 85017612753     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs9040309     Document Type: Article
Times cited : (227)

References (55)
  • 1
    • 0000281442 scopus 로고
    • Seasonal changes in photosynthesis of field-grown soybean leaflets. 2. Relation to nitrogen content
    • Lugg, D.G.; Sinclair, T.R. Seasonal changes in photosynthesis of field-grown soybean leaflets. 2. Relation to nitrogen content. Photosynthetica 1981, 15, 138-144
    • (1981) Photosynthetica , vol.15 , pp. 138-144
    • Lugg, D.G.1    Sinclair, T.R.2
  • 2
    • 0000852139 scopus 로고
    • Response of soybean photosynthesis and chloroplast membrane function to canopy development and mutual shading
    • Burkey, K.O.; Wells, R. Response of soybean photosynthesis and chloroplast membrane function to canopy development and mutual shading. Plant Physiol. 1991, 97, 245-252
    • (1991) Plant Physiol , vol.97 , pp. 245-252
    • Burkey, K.O.1    Wells, R.2
  • 4
    • 0036214130 scopus 로고    scopus 로고
    • Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements
    • Chen, J.M.; Pavlic, G.; Brown, L.; Cihlar, J.; Leblanc, S.G. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sens. Environ. 2002, 80, 165-184
    • (2002) Remote Sens. Environ , vol.80 , pp. 165-184
    • Chen, J.M.1    Pavlic, G.2    Brown, L.3    Cihlar, J.4    Leblanc, S.G.5
  • 5
    • 2942618334 scopus 로고    scopus 로고
    • A continuous satellite-derived measure of global terrestrial primary production
    • Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547-560
    • (2004) Bioscience , vol.54 , pp. 547-560
    • Running, S.W.1    Nemani, R.R.2    Heinsch, F.A.3    Zhao, M.4    Reeves, M.5
  • 6
    • 0242459671 scopus 로고    scopus 로고
    • Ground-based measurements of leaf area index: A review of methods, instruments and current controversies
    • Breda, N. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. J. Exp. Bot. 2003, 54, 2403-2417
    • (2003) J. Exp. Bot , vol.54 , pp. 2403-2417
    • Breda, N.1
  • 7
    • 0348251330 scopus 로고    scopus 로고
    • Review of methods for in situ leaf area index determination-Part I. Theories, sensors and hemispherical photography
    • Jonckheere, I.; Fleck, S.; Nackaerts, K.; Muys, B.; Coppin, P.;Weiss, M.; Baret, F. Review of methods for in situ leaf area index determination-Part I. Theories, sensors and hemispherical photography. Agric. For. Meteorol. 2004, 121, 19-35
    • (2004) Agric. For. Meteorol , vol.121 , pp. 19-35
    • Jonckheere, I.1    Fleck, S.2    Nackaerts, K.3    Muys, B.4    Coppin, P.5    Weiss, M.6    Baret, F.7
  • 9
    • 84959878017 scopus 로고    scopus 로고
    • Estimating the crop leaf area index using hyperspectral remote sensing
    • Liu, K.; Zhou, Q.;Wu, W.; Xia, T.; Tang, H. Estimating the crop leaf area index using hyperspectral remote sensing. J. Integr. Agric. 2016, 15, 475-491
    • (2016) J. Integr. Agric , vol.15 , pp. 475-491
    • Liu, K.1    Zhou, Q.2    Wu, W.3    Xia, T.4    Tang, H.5
  • 10
    • 84904497701 scopus 로고    scopus 로고
    • Exploring the best hyperspectral features for LAI estimation using partial least squares regression
    • Li, X.; Zhang, Y.; Bao, Y.; Luo, J.; Jin, X.; Xu, X.; Song, X.; Yang, G. Exploring the best hyperspectral features for LAI estimation using partial least squares regression. Remote Sens. 2014, 6, 6221-6241
    • (2014) Remote Sens , vol.6 , pp. 6221-6241
    • Li, X.1    Zhang, Y.2    Bao, Y.3    Luo, J.4    Jin, X.5    Xu, X.6    Song, X.7    Yang, G.8
  • 11
    • 84929581266 scopus 로고    scopus 로고
    • Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method
    • Liang, L.; Di, L.; Zhang, L.; Deng, M.; Qin, Z.; Zhao, S.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 2015, 165, 123-134
    • (2015) Remote Sens. Environ , vol.165 , pp. 123-134
    • Liang, L.1    Di, L.2    Zhang, L.3    Deng, M.4    Qin, Z.5    Zhao, S.6    Lin, H.7
  • 14
    • 60349114041 scopus 로고    scopus 로고
    • Retrieval of leaf area index from CHRIS/PROBA data: An analysis of the directional and spectral information content
    • Vuolo, F.; Dini, L.; D'Urso, G. Retrieval of leaf area index from CHRIS/PROBA data: An analysis of the directional and spectral information content. Int. J. Remote Sens. 2008, 29, 5063-5072
    • (2008) Int. J. Remote Sens , vol.29 , pp. 5063-5072
    • Vuolo, F.1    Dini, L.2    D'Urso, G.3
  • 15
    • 34047253582 scopus 로고    scopus 로고
    • Method for estimating crop leaf area index of China using remote sensing
    • Jihua, M.; Bingfang, W.; Qiangzi, L. Method for estimating crop leaf area index of China using remote sensing. Trans. Chin. Soc. Agric. Eng. 2007, 23, 160-167
    • (2007) Trans. Chin. Soc. Agric. Eng , vol.23 , pp. 160-167
    • Jihua, M.1    Bingfang, W.2    Qiangzi, L.3
  • 17
    • 84877251037 scopus 로고    scopus 로고
    • Remote sensing inversion of leaf area index based on support vector machine regression in winter wheat
    • Liang, D.; Guan, Q.; Huang, W.; Huang, L.; Yang, G. Remote sensing inversion of leaf area index based on support vector machine regression in winter wheat. Trans. Chin. Soc. Agric. Eng. 2013, 29, 117-123
    • (2013) Trans. Chin. Soc. Agric. Eng , vol.29 , pp. 117-123
    • Liang, D.1    Guan, Q.2    Huang, W.3    Huang, L.4    Yang, G.5
  • 18
    • 4143117935 scopus 로고    scopus 로고
    • Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations
    • Meroni, M.; Colombo, R.; Panigada, C. Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sens. Environ. 2004, 92, 195-206
    • (2004) Remote Sens. Environ , vol.92 , pp. 195-206
    • Meroni, M.1    Colombo, R.2    Panigada, C.3
  • 19
    • 84897827083 scopus 로고    scopus 로고
    • Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data
    • Duan, S.; Li, Z.;Wu, H.; Tang, B.; Ma, L.; Zhao, E.; Li, C. Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data. Int. J. Appl. Earth Obs. 2014, 26, 12-20
    • (2014) Int. J. Appl. Earth Obs , vol.26 , pp. 12-20
    • Duan, S.1    Li, Z.2    Wu, H.3    Tang, B.4    Ma, L.5    Zhao, E.6    Li, C.7
  • 24
    • 84971618277 scopus 로고    scopus 로고
    • Empirical prediction of Leaf Area Index (LAI) of endangered tree species in intact and fragmented indigenous forests Ecosystems usingWorldView-2 data and two robust machine learning algorithms
    • Omer, G.; Mutanga, O.; Abdel-Rahman, E.M.; Adam, E. Empirical prediction of Leaf Area Index (LAI) of endangered tree species in intact and fragmented indigenous forests Ecosystems usingWorldView-2 data and two robust machine learning algorithms. Remote Sens. 2016, 8, 324
    • (2016) Remote Sens , vol.8 , pp. 324
    • Omer, G.1    Mutanga, O.2    Abdel-Rahman, E.M.3    Adam, E.4
  • 26
    • 79151485999 scopus 로고    scopus 로고
    • Bayesian network modeling for improving forest growth estimates
    • Mustafa, Y.T.; Van Laake, P.E.; Stein, A. Bayesian network modeling for improving forest growth estimates. IEEE Trans. Geosci. Remote 2011, 49, 639-649
    • (2011) IEEE Trans. Geosci. Remote , vol.49 , pp. 639-649
    • Mustafa, Y.T.1    Van Laake, P.E.2    Stein, A.3
  • 27
    • 85017648222 scopus 로고    scopus 로고
    • Prediction of leaf area index using hyperspectral remote sensing in breeding programs of soybean
    • Bo, Q.I.; Zhang, N.; Zhao, T.J.; Xing, G.N.; Zhao, J.M.; Gai, J.Y. Prediction of leaf area index using hyperspectral remote sensing in breeding programs of soybean. Acta Agron. Sin. 2015, 41, 1073
    • (2015) Acta Agron. Sin , vol.41 , pp. 1073
    • Bo, Q.I.1    Zhang, N.2    Zhao, T.J.3    Xing, G.N.4    Zhao, J.M.5    Gai, J.Y.6
  • 28
    • 85010685709 scopus 로고    scopus 로고
    • Parametric methods for comparing the performance of two classification algorithms evaluated by k-fold cross validation on multiple data sets
    • Wong, T. Parametric methods for comparing the performance of two classification algorithms evaluated by k-fold cross validation on multiple data sets. Pattern Recogn. 2017, 65, 97-107
    • (2017) Pattern Recogn , vol.65 , pp. 97-107
    • Wong, T.1
  • 29
    • 79960070000 scopus 로고    scopus 로고
    • Probabilistic flood forecasting by a sampling-based Bayesian model
    • Mingliang, L.I.; Yang, D.; Chen, J. Probabilistic flood forecasting by a sampling-based Bayesian model. J. Hydroelectr. Eng. 2011, 30, 27-33
    • (2011) J. Hydroelectr. Eng , vol.30 , pp. 27-33
    • Mingliang, L.I.1    Yang, D.2    Chen, J.3
  • 30
    • 0003396332 scopus 로고
    • China Statistical Publishing House: Beijing, China
    • Cochran, W.G. Sampling Technique; China Statistical Publishing House: Beijing, China, 1985
    • (1985) Sampling Technique
  • 31
    • 84941263991 scopus 로고    scopus 로고
    • Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance
    • Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. 2015, 108, 245-259
    • (2015) ISPRS J. Photogramm , vol.108 , pp. 245-259
    • Aasen, H.1    Burkart, A.2    Bolten, A.3    Bareth, G.4
  • 32
    • 84983738622 scopus 로고    scopus 로고
    • Predicting grassland leaf area index in the Meadow Steppes of Northern China: A comparative study of regression approaches and hybrid geostatistical methods
    • Li, Z.;Wang, J.; Tang, H.; Huang, C.; Yang, F.; Chen, B.;Wang, X.; Xin, X.; Ge, Y. Predicting grassland leaf area index in the Meadow Steppes of Northern China: A comparative study of regression approaches and hybrid geostatistical methods. Remote Sens. 2016, 8, 632
    • (2016) Remote Sens , vol.8 , pp. 632
    • Li, Z.1    Wang, J.2    Tang, H.3    Huang, C.4    Yang, F.5    Chen, B.6    Wang, X.7    Xin, X.8    Ge, Y.9
  • 35
    • 84953958946 scopus 로고
    • Some implementations of the boxplot
    • Frigge, M.; Hoaglin, D.C.; Iglewicz, B. Some implementations of the boxplot. Am. Stat. 1989, 43, 50-54. [CrossRef]
    • (1989) Am. Stat , vol.43 , pp. 50-54
    • Frigge, M.1    Hoaglin, D.C.2    Iglewicz, B.3
  • 36
    • 0013034246 scopus 로고
    • Opening the box of a boxplot
    • Benjamini, Y. Opening the box of a boxplot. Am. Stat. 1988, 42, 257-262
    • (1988) Am. Stat , vol.42 , pp. 257-262
    • Benjamini, Y.1
  • 37
    • 84872863985 scopus 로고    scopus 로고
    • Detection of diurnal variation in orchard canopy water content using MODIS/ASTER Airborne Simulator (MASTER) data
    • Cheng, T.; Riaño, D.; Koltunov, A.; Whiting, M.L.; Ustin, S.L.; Rodriguez, J. Detection of diurnal variation in orchard canopy water content using MODIS/ASTER Airborne Simulator (MASTER) data. Remote Sens. Environ. 2013, 132, 1-12
    • (2013) Remote Sens. Environ , vol.132 , pp. 1-12
    • Cheng, T.1    Riaño, D.2    Koltunov, A.3    Whiting, M.L.4    Ustin, S.L.5    Rodriguez, J.6
  • 38
    • 0029285182 scopus 로고
    • Sample size in qualitative research
    • Sandelowski, M. Sample size in qualitative research. Res. Nurs. Health 1995, 18, 179-183. [PubMed]
    • (1995) Res. Nurs. Health , vol.18 , pp. 179-183
    • Sandelowski, M.1
  • 39
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 41
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw, A.;Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18-22
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 42
    • 84857770220 scopus 로고    scopus 로고
    • Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign Spring: Champaign, IL, USA
    • He, Q. Neural Network and its Application in IR; Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign Spring: Champaign, IL, USA, 1999
    • (1999) Neural Network and its Application in IR
    • He, Q.1
  • 43
    • 0032552629 scopus 로고    scopus 로고
    • Review article: Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements
    • Kimes, D.S.; Nelson, R.F.; Manry, M.T.; Fung, A.K. Review article: Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements. Int. J. Remote Sens. 1998, 19, 2639-2663
    • (1998) Int. J. Remote Sens , vol.19 , pp. 2639-2663
    • Kimes, D.S.1    Nelson, R.F.2    Manry, M.T.3    Fung, A.K.4
  • 45
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273-297
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 47
    • 0036469481 scopus 로고    scopus 로고
    • Conformal transformation of Kernel functions: A data-dependent way to improve support vector machine classifiers
    • Si, W.; Amari, S.I. Conformal transformation of Kernel functions: A data-dependent way to improve support vector machine classifiers. Neural Process. Lett. 2002, 15, 59-67
    • (2002) Neural Process. Lett , vol.15 , pp. 59-67
    • Si, W.1    Amari, S.I.2
  • 49
    • 11144325691 scopus 로고
    • Partial least-squares regression: A tutorial
    • Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1-17. [CrossRef]
    • (1986) Anal. Chim. Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 50
    • 0015973904 scopus 로고
    • A predictive approach to the random effect model
    • Geisser, S. A predictive approach to the random effect model. Biometrika 1974, 61, 101-107
    • (1974) Biometrika , vol.61 , pp. 101-107
    • Geisser, S.1
  • 51
    • 50849137515 scopus 로고    scopus 로고
    • Remote sensing of the distribution and abundance of host species for spruce budworm in Northern Minnesota and Ontario
    • Wolter, P.T.; Townsend, P.A.; Sturtevant, B.R.; Kingdon, C.C. Remote sensing of the distribution and abundance of host species for spruce budworm in Northern Minnesota and Ontario. Remote Sens. Environ. 2008, 112, 3971-3982
    • (2008) Remote Sens. Environ , vol.112 , pp. 3971-3982
    • Wolter, P.T.1    Townsend, P.A.2    Sturtevant, B.R.3    Kingdon, C.C.4
  • 52
    • 33846829987 scopus 로고    scopus 로고
    • The pls package: Principal component and partial least squares regression in R
    • Mevik, B.;Wehrens, R. The pls package: Principal component and partial least squares regression in R. J. Stat. Softw. 2007, 18, 1-24
    • (2007) J. Stat. Softw , vol.18 , pp. 1-24
    • Mevik, B.1    Wehrens, R.2
  • 53
    • 33645231505 scopus 로고    scopus 로고
    • Assessment of the adequacy of mathematical models
    • Tedeschi, L.O. Assessment of the adequacy of mathematical models. Agric. Syst. 2006, 89, 225-247
    • (2006) Agric. Syst , vol.89 , pp. 225-247
    • Tedeschi, L.O.1
  • 54
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225-1231
    • (1996) J. Clin. Epidemiol , vol.49 , pp. 1225-1231
    • Tu, J.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.