-
1
-
-
0027280820
-
Uptake and degradation of glyceraldehyde-3-phosphate dehydrogenase by rat liver lysosomes
-
Aniento, F., E. Roche, A.M. Cuervo, and E. Knecht. 1993. Uptake and degradation of glyceraldehyde-3-phosphate dehydrogenase by rat liver lysosomes. J. Biol. Chem. 268:10463-10470.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 10463-10470
-
-
Aniento, F.1
Roche, E.2
Cuervo, A.M.3
Knecht, E.4
-
2
-
-
84855405986
-
Modulation of AKT activity is associated with reversible dormancy in ascites-derived epithelial ovarian cancer spheroids
-
Correa, R.J., T. Peart, Y.R. Valdes, G.E. DiMattia, and T.G. Shepherd. 2012. Modulation of AKT activity is associated with reversible dormancy in ascites-derived epithelial ovarian cancer spheroids. Carcinogenesis. 33:49-58. http://dx.doi.org/10.1093/carcin/bgr241
-
(2012)
Carcinogenesis.
, vol.33
, pp. 49-58
-
-
Correa, R.J.1
Peart, T.2
Valdes, Y.R.3
DiMattia, G.E.4
Shepherd, T.G.5
-
3
-
-
77949328788
-
Chaperone-mediated autophagy: selectivity pays off
-
Cuervo, A.M. 2010. Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol. Metab. 21:142-150. http://dx.doi.org/10.1016/j.tem.2009.10.003
-
(2010)
Trends Endocrinol. Metab.
, vol.21
, pp. 142-150
-
-
Cuervo, A.M.1
-
4
-
-
0031595780
-
IκB is a substrate for a selective pathway of lysosomal proteolysis
-
Cuervo, A.M., W. Hu, B. Lim, and J.F. Dice. 1998. IκB is a substrate for a selective pathway of lysosomal proteolysis. Mol. Biol. Cell. 9:1995-2010. http://dx.doi.org/10.1091/mbc.9.8.1995
-
(1998)
Mol. Biol. Cell.
, vol.9
, pp. 1995-2010
-
-
Cuervo, A.M.1
Hu, W.2
Lim, B.3
Dice, J.F.4
-
5
-
-
33644840693
-
Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury
-
Degterev, A., Z. Huang, M. Boyce, Y. Li, P. Jagtap, N. Mizushima, G.D. Cuny, T.J. Mitchison, M.A. Moskowitz, and J. Yuan. 2005. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1:112-119. http://dx.doi.org/10.1038/nchembio711
-
(2005)
Nat. Chem. Biol.
, vol.1
, pp. 112-119
-
-
Degterev, A.1
Huang, Z.2
Boyce, M.3
Li, Y.4
Jagtap, P.5
Mizushima, N.6
Cuny, G.D.7
Mitchison, T.J.8
Moskowitz, M.A.9
Yuan, J.10
-
6
-
-
84869204071
-
Overexpression of ecdysoneless in pancreatic cancer and its role in oncogenesis by regulating glycolysis
-
Dey, P., S. Rachagani, S. Chakraborty, P.K. Singh, X. Zhao, C.B. Gurumurthy, J.M. Anderson, S. Lele, M.A. Hollingsworth, V. Band, and S.K. Batra. 2012. Overexpression of ecdysoneless in pancreatic cancer and its role in oncogenesis by regulating glycolysis. Clin. Cancer Res. 18:6188-6198. http://dx.doi.org/10.1158/1078-0432.CCR-12-1789
-
(2012)
Clin. Cancer Res.
, vol.18
, pp. 6188-6198
-
-
Dey, P.1
Rachagani, S.2
Chakraborty, S.3
Singh, P.K.4
Zhao, X.5
Gurumurthy, C.B.6
Anderson, J.M.7
Lele, S.8
Hollingsworth, M.A.9
Band, V.10
Batra, S.K.11
-
7
-
-
2542561169
-
Akt stimulates aerobic glycolysis in cancer cells
-
Elstrom, R.L., D.E. Bauer, M. Buzzai, R. Karnauskas, M.H. Harris, D.R. Plas, H. Zhuang, R.M. Cinalli, A. Alavi, C.M. Rudin, and C.B. Thompson. 2004. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64:3892-3899. http://dx.doi.org/10.1158/0008-5472.CAN-03-2904
-
(2004)
Cancer Res.
, vol.64
, pp. 3892-3899
-
-
Elstrom, R.L.1
Bauer, D.E.2
Buzzai, M.3
Karnauskas, R.4
Harris, M.H.5
Plas, D.R.6
Zhuang, H.7
Cinalli, R.M.8
Alavi, A.9
Rudin, C.M.10
Thompson, C.B.11
-
8
-
-
84864318195
-
Chaperone-mediated autophagy: a unique way to enter the lysosome world
-
Kaushik, S., and A.M. Cuervo. 2012. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 22:407-417. http://dx.doi.org/10.1016/j.tcb.2012.05.006
-
(2012)
Trends Cell Biol.
, vol.22
, pp. 407-417
-
-
Kaushik, S.1
Cuervo, A.M.2
-
9
-
-
84894255030
-
FLT3 tyrosine kinase inhibitors in acute myeloid leukemia: clinical implications and limitations
-
Kayser, S., and M.J. Levis. 2014. FLT3 tyrosine kinase inhibitors in acute myeloid leukemia: clinical implications and limitations. Leuk. Lymphoma. 55:243-255. http://dx.doi.org/10.3109/10428194.2013.800198
-
(2014)
Leuk. Lymphoma.
, vol.55
, pp. 243-255
-
-
Kayser, S.1
Levis, M.J.2
-
10
-
-
44449147036
-
Tumor cell metabolism: cancer's Achilles' heel
-
Kroemer, G., and J. Pouyssegur. 2008. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell. 13:472-482. http://dx.doi.org/10.1016/j.ccr.2008.05.005
-
(2008)
Cancer Cell.
, vol.13
, pp. 472-482
-
-
Kroemer, G.1
Pouyssegur, J.2
-
11
-
-
80053501671
-
Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13
-
Liu, J., H. Xia, M. Kim, L. Xu, Y. Li, L. Zhang, Y. Cai, H.V. Norberg, T. Zhang, T. Furuya, et al. 2011. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell. 147:223-234. http://dx.doi.org/10.1016/j.cell.2011.08.037
-
(2011)
Cell.
, vol.147
, pp. 223-234
-
-
Liu, J.1
Xia, H.2
Kim, M.3
Xu, L.4
Li, Y.5
Zhang, L.6
Cai, Y.7
Norberg, H.V.8
Zhang, T.9
Furuya, T.10
-
12
-
-
84919918303
-
Dual proteolytic pathways govern glycolysis and immune competence
-
Lu, W., Y. Zhang, D.O. McDonald, H. Jing, B. Carroll, N. Robertson, Q. Zhang, H. Griffin, S. Sanderson, J.H. Lakey, et al. 2014. Dual proteolytic pathways govern glycolysis and immune competence. Cell. 159:1578-1590. http://dx.doi.org/10.1016/j.cell.2014.12.001
-
(2014)
Cell.
, vol.159
, pp. 1578-1590
-
-
Lu, W.1
Zhang, Y.2
McDonald, D.O.3
Jing, H.4
Carroll, B.5
Robertson, N.6
Zhang, Q.7
Griffin, H.8
Sanderson, S.9
Lakey, J.H.10
-
13
-
-
78049295120
-
Aerobic glycolysis suppresses p53 activity to provide selective protection from apoptosis upon loss of growth signals or inhibition of BCR-Abl
-
Mason, E.F., Y. Zhao, P. Goraksha-Hicks, J.L. Coloff, H. Gannon, S.N. Jones, and J.C. Rathmell. 2010. Aerobic glycolysis suppresses p53 activity to provide selective protection from apoptosis upon loss of growth signals or inhibition of BCR-Abl. Cancer Res. 70:8066-8076. http://dx.doi.org/10.1158/0008-5472.CAN-10-0608
-
(2010)
Cancer Res.
, vol.70
, pp. 8066-8076
-
-
Mason, E.F.1
Zhao, Y.2
Goraksha-Hicks, P.3
Coloff, J.L.4
Gannon, H.5
Jones, S.N.6
Rathmell, J.C.7
-
14
-
-
81055144784
-
Autophagy: renovation of cells and tissues
-
Mizushima, N., and M. Komatsu. 2011. Autophagy: renovation of cells and tissues. Cell. 147:728-741. http://dx.doi.org/10.1016/j.cell.2011.10.026
-
(2011)
Cell.
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
15
-
-
0031869504
-
The structure of mammalian hexokinase-1
-
Mulichak, A.M., J.E. Wilson, K. Padmanabhan, and R.M. Garavito. 1998. The structure of mammalian hexokinase-1. Nat. Struct. Biol. 5:555-560. http://dx.doi.org/10.1038/811
-
(1998)
Nat. Struct. Biol.
, vol.5
, pp. 555-560
-
-
Mulichak, A.M.1
Wilson, J.E.2
Padmanabhan, K.3
Garavito, R.M.4
-
16
-
-
84897425087
-
Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischaemia-reperfusion injury in heart
-
Nederlof, R., O. Eerbeek, M.W. Hollmann, R. Southworth, and C.J. Zuurbier. 2014. Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischaemia-reperfusion injury in heart. Br. J. Pharmacol. 171:2067-2079. http://dx.doi.org/10.1111/bph.12363
-
(2014)
Br. J. Pharmacol.
, vol.171
, pp. 2067-2079
-
-
Nederlof, R.1
Eerbeek, O.2
Hollmann, M.W.3
Southworth, R.4
Zuurbier, C.J.5
-
17
-
-
33747332700
-
FMS-like tyrosine kinase 3 in normal hematopoiesis and acute myeloid leukemia
-
Parcells, B.W., A.K. Ikeda, T. Simms-Waldrip, T.B. Moore, and K.M. Sakamoto. 2006. FMS-like tyrosine kinase 3 in normal hematopoiesis and acute myeloid leukemia. Stem Cells. 24:1174-1184. http://dx.doi.org/10.1634/stemcells.2005-0519
-
(2006)
Stem Cells.
, vol.24
, pp. 1174-1184
-
-
Parcells, B.W.1
Ikeda, A.K.2
Simms-Waldrip, T.3
Moore, T.B.4
Sakamoto, K.M.5
-
18
-
-
84881557242
-
Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer
-
Patra, K.C., Q. Wang, P.T. Bhaskar, L. Miller, Z. Wang, W. Wheaton, N. Chandel, M. Laakso, W.J. Muller, E.L. Allen, et al. 2013. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell. 24:213-228. http://dx.doi.org/10.1016/j.ccr.2013.06.014
-
(2013)
Cancer Cell.
, vol.24
, pp. 213-228
-
-
Patra, K.C.1
Wang, Q.2
Bhaskar, P.T.3
Miller, L.4
Wang, Z.5
Wheaton, W.6
Chandel, N.7
Laakso, M.8
Muller, W.J.9
Allen, E.L.10
-
19
-
-
84936797105
-
Quantitative proteomics of human fibroblasts with I1061T mutation in Niemann-Pick C1 (NPC1) protein provides insights into the disease pathogenesis
-
Rauniyar, N., K. Subramanian, M. Lavallee-Adam, S. Martinez-Bartolome, W.E. Balch, and J.R. Yates III. 2015. Quantitative proteomics of human fibroblasts with I1061T mutation in Niemann-Pick C1 (NPC1) protein provides insights into the disease pathogenesis. Mol. Cell. Proteomics.:1734. http://dx.doi.org/10.1074/mcp.M114.045609
-
(2015)
Mol. Cell. Proteomics.
, pp. 1734
-
-
Rauniyar, N.1
Subramanian, K.2
Lavallee-Adam, M.3
Martinez-Bartolome, S.4
Balch, W.E.5
Yates, J.R.6
-
20
-
-
0038051295
-
A rapid method to separate endosomes from lysosomal contents using differential centrifugation and hypotonic lysis of lysosomes
-
Schröter, C.J., M. Braun, J. Englert, H. Beck, H. Schmid, and H. Kalbacher. 1999. A rapid method to separate endosomes from lysosomal contents using differential centrifugation and hypotonic lysis of lysosomes. J. Immunol. Methods. 227:161-168. http://dx.doi.org/10.1016/S0022-1759(99)00079-4
-
(1999)
J. Immunol. Methods.
, vol.227
, pp. 161-168
-
-
Schröter, C.J.1
Braun, M.2
Englert, J.3
Beck, H.4
Schmid, H.5
Kalbacher, H.6
-
21
-
-
33745307617
-
Ras, PI(3)K and mTOR signalling controls tumour cell growth
-
Shaw, R.J., and L.C. Cantley. 2006. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 441:424-430. http://dx.doi.org/10.1038/nature04869
-
(2006)
Nature.
, vol.441
, pp. 424-430
-
-
Shaw, R.J.1
Cantley, L.C.2
-
22
-
-
0036393898
-
DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics
-
Tabb, D.L., W.H. McDonald, and J.R. Yates III. 2002. DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1:21-26. http://dx.doi.org/10.1021/pr015504q
-
(2002)
J. Proteome Res.
, vol.1
, pp. 21-26
-
-
Tabb, D.L.1
McDonald, W.H.2
Yates, J.R.3
-
23
-
-
84881061593
-
Chaperone-mediated autophagy degrades mutant p53
-
Vakifahmetoglu-Norberg, H., M. Kim, H.G. Xia, M.P. Iwanicki, D. Ofengeim, J.L. Coloff, L. Pan, T.A. Ince, G. Kroemer, J.S. Brugge, and J. Yuan. 2013. Chaperone-mediated autophagy degrades mutant p53. Genes Dev. 27:1718-1730. http://dx.doi.org/10.1101/gad.220897.113
-
(2013)
Genes Dev.
, vol.27
, pp. 1718-1730
-
-
Vakifahmetoglu-Norberg, H.1
Kim, M.2
Xia, H.G.3
Iwanicki, M.P.4
Ofengeim, D.5
Coloff, J.L.6
Pan, L.7
Ince, T.A.8
Kroemer, G.9
Brugge, J.S.10
Yuan, J.11
-
24
-
-
84870986907
-
Research methods: Know when your numbers are significant
-
Vaux, D.L. 2012. Research methods: Know when your numbers are significant. Nature. 492:180-181.
-
(2012)
Nature.
, vol.492
, pp. 180-181
-
-
Vaux, D.L.1
-
25
-
-
0035106351
-
Large-scale analysis of the yeast proteome by multidimensional protein identification technology
-
Washburn, M.P., D. Wolters, and J.R. Yates III. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19:242-247. http://dx.doi.org/10.1038/85686
-
(2001)
Nat. Biotechnol.
, vol.19
, pp. 242-247
-
-
Washburn, M.P.1
Wolters, D.2
Yates, J.R.3
-
26
-
-
84861526009
-
Deconvoluting the context-dependent role for autophagy in cancer
-
White, E. 2012. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer. 12:401-410. http://dx.doi.org/10.1038/nrc3262
-
(2012)
Nat. Rev. Cancer.
, vol.12
, pp. 401-410
-
-
White, E.1
-
27
-
-
79951699777
-
Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme
-
Wolf, A., S. Agnihotri, J. Micallef, J. Mukherjee, N. Sabha, R. Cairns, C. Hawkins, and A. Guha. 2011. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J. Exp. Med. 208:313-326. http://dx.doi.org/10.1084/jem.20101470
-
(2011)
J. Exp. Med.
, vol.208
, pp. 313-326
-
-
Wolf, A.1
Agnihotri, S.2
Micallef, J.3
Mukherjee, J.4
Sabha, N.5
Cairns, R.6
Hawkins, C.7
Guha, A.8
-
28
-
-
70449475105
-
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML)
-
Zarrinkar, P.P., R.N. Gunawardane, M.D. Cramer, M.F. Gardner, D. Brigham, B. Belli, M.W. Karaman, K.W. Pratz, G. Pallares, Q. Chao, et al. 2009. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 114:2984-2992. http://dx.doi.org/10.1182/blood-2009-05-222034
-
(2009)
Blood.
, vol.114
, pp. 2984-2992
-
-
Zarrinkar, P.P.1
Gunawardane, R.N.2
Cramer, M.D.3
Gardner, M.F.4
Brigham, D.5
Belli, B.6
Karaman, M.W.7
Pratz, K.W.8
Pallares, G.9
Chao, Q.10
|