메뉴 건너뛰기




Volumn 22, Issue 5, 2018, Pages 1619-1629

Multiobjective Patient Stratification Using Evolutionary Multiobjective Optimization

Author keywords

clustering; multiobjective algorithm; Patient stratification

Indexed keywords

EVOLUTIONARY ALGORITHMS; MULTIOBJECTIVE OPTIMIZATION; STOCHASTIC SYSTEMS; TRANSCRIPTION;

EID: 85034265076     PISSN: 21682194     EISSN: 21682208     Source Type: Journal    
DOI: 10.1109/JBHI.2017.2769711     Document Type: Article
Times cited : (10)

References (53)
  • 2
    • 84923834004 scopus 로고    scopus 로고
    • Targeted exploration and analysis of large cross-platform human transcriptomic compendia
    • Q. Zhu et al., "Targeted exploration and analysis of large cross-platform human transcriptomic compendia." Nature Methods, vol. 12, no. 3, pp. 211-214, 2015.
    • (2015) Nature Methods , vol.12 , Issue.3 , pp. 211-214
    • Zhu, Q.1
  • 3
    • 37749031255 scopus 로고    scopus 로고
    • Next-generation sequencing transforms today's biology
    • S. C. Schuster, "Next-generation sequencing transforms today's biology." Nature Methods, vol. 5, no. 1, pp. 16-18, 2008.
    • (2008) Nature Methods , vol.5 , Issue.1 , pp. 16-18
    • Schuster, S.C.1
  • 4
    • 39649117755 scopus 로고    scopus 로고
    • The impact of next-generation sequencing technology on genetics
    • E. R. Mardis, "The impact of next-generation sequencing technology on genetics, " Trends Genetics, vol. 24, no. 3, pp. 133-141, 2008.
    • (2008) Trends Genetics , vol.24 , Issue.3 , pp. 133-141
    • Mardis, E.R.1
  • 5
    • 79959435199 scopus 로고    scopus 로고
    • Genome-wide genetic marker discovery and genotyping using next-generation sequencing
    • J. W. Davey, P. A. Hohenlohe, P. D. Etter, J. Q. Boone, J. M. Catchen, and M. L. Blaxter, "Genome-wide genetic marker discovery and genotyping using next-generation sequencing, " Nature Rev. Genetics, vol. 12, no. 7, pp. 499-510, 2011.
    • (2011) Nature Rev. Genetics , vol.12 , Issue.7 , pp. 499-510
    • Davey, J.W.1    Hohenlohe, P.A.2    Etter, P.D.3    Boone, J.Q.4    Catchen, J.M.5    Blaxter, M.L.6
  • 6
    • 32944454936 scopus 로고    scopus 로고
    • An integrated computational/experimental model of tumor invasion
    • H. B. Frieboes, X. Zheng, C. H. Sun, B. Tromberg, R. Gatenby, and V. Cristini, "An integrated computational/experimental model of tumor invasion, " Cancer Res., vol. 66, no. 3, pp. 1597-1604, 2006.
    • (2006) Cancer Res. , vol.66 , Issue.3 , pp. 1597-1604
    • Frieboes, H.B.1    Zheng, X.2    Sun, C.H.3    Tromberg, B.4    Gatenby, R.5    Cristini, V.6
  • 7
    • 84874610717 scopus 로고    scopus 로고
    • Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype
    • E. Bresin et al., "Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype, " J. Amer. Soc. Nephrol., vol. 24, no. 3, pp. 475-486, 2013.
    • (2013) J. Amer. Soc. Nephrol. , vol.24 , Issue.3 , pp. 475-486
    • Bresin, E.1
  • 8
    • 84947476425 scopus 로고    scopus 로고
    • Dendextend: An R package for visualizing, adjusting and comparing trees of hierarchical clustering
    • T. Galili, "dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering." Bioinformatics, vol. 31, no. 22, pp. 3718-3720, 2015.
    • (2015) Bioinformatics , vol.31 , Issue.22 , pp. 3718-3720
    • Galili, T.1
  • 9
    • 84961613500 scopus 로고    scopus 로고
    • XCluSim: A visual analytics tool for interactively comparing multiple clustering results of bioinformatics data
    • Sehi L'Yi et al., "XCluSim: A visual analytics tool for interactively comparing multiple clustering results of bioinformatics data, " BMC bioinfor-matics, vol. 16, no. 11, 2015, Art. no. S5.
    • (2015) BMC Bioinfor-matics , vol.16 , Issue.11
    • L'Yi, S.1
  • 10
    • 85018295894 scopus 로고    scopus 로고
    • DACE: A scalable DP-means algorithm for clustering extremely large sequence data
    • L. Jiang, Y. Dong, N. Chen, and T. Chen, "DACE: A scalable DP-means algorithm for clustering extremely large sequence data, " Bioinformatics, vol. 33, no. 6, pp. 834-842, 2016.
    • (2016) Bioinformatics , vol.33 , Issue.6 , pp. 834-842
    • Jiang, L.1    Dong, Y.2    Chen, N.3    Chen, T.4
  • 12
    • 84931072284 scopus 로고    scopus 로고
    • Identification of cell types from single-cell transcrip-tomes using a novel clustering method
    • C. Xu, and Z. Su, "Identification of cell types from single-cell transcrip-tomes using a novel clustering method, " Bioinformatics, vol. 31, no. 12, pp. 1974-1980, 2015.
    • (2015) Bioinformatics , vol.31 , Issue.12 , pp. 1974-1980
    • Xu, C.1    Su, Z.2
  • 13
    • 84897884164 scopus 로고    scopus 로고
    • PyGCluster, a novel hierarchical clustering approach
    • D. Jaeger, J. Barth, A. Niehues, and C. Fufezan, "pyGCluster, a novel hierarchical clustering approach, " Bioinformatics, vol. 30, no. 6, pp. 896-898, 2014.
    • (2014) Bioinformatics , vol.30 , Issue.6 , pp. 896-898
    • Jaeger, D.1    Barth, J.2    Niehues, A.3    Fufezan, C.4
  • 14
    • 84893167354 scopus 로고    scopus 로고
    • A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expres-sion
    • Y. Liu, Q. Gu, J. P. Hou, J. Han, and J. Ma, "A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expres-sion, " BMC Bioinformatics, vol. 15, no. 1, 2014, Art. no. 37.
    • (2014) BMC Bioinformatics , vol.15 , Issue.1
    • Liu, Y.1    Gu, Q.2    Hou, J.P.3    Han, J.4    Ma, J.5
  • 15
    • 84901256826 scopus 로고    scopus 로고
    • On the selection of appropriate distances for gene expression data clustering
    • P. A. Jaskowiak, R. J. Campello, and I. G. Costa, "On the selection of appropriate distances for gene expression data clustering, " BMC Bioinfor-mat., vol. 15, no. 2, pp. S2, 2014.
    • (2014) BMC Bioinfor-mat. , vol.15 , Issue.2 , pp. S2
    • Jaskowiak, P.A.1    Campello, R.J.2    Costa, I.G.3
  • 16
    • 85024483430 scopus 로고    scopus 로고
    • RNAscClust: Clustering RNA sequences using structure conservation and graph based motifs
    • M. Miladi et al., "RNAscClust: clustering RNA sequences using structure conservation and graph based motifs, " Bioinformatics, vol. 33, no. 14, pp. 2089-2096, 2017.
    • (2017) Bioinformatics , vol.33 , Issue.14 , pp. 2089-2096
    • Miladi, M.1
  • 17
    • 85019662252 scopus 로고    scopus 로고
    • Lineage-specific mutational clustering in protein structures predicts evolutionary shifts in function
    • J. Adams, M. J. Mansfield, D. J. Richard, and A. C. Doxey, "Lineage-specific mutational clustering in protein structures predicts evolutionary shifts in function, " Bioinformatics, vol. 33, no. 9, pp. 1338-1345, 2017.
    • (2017) Bioinformatics , vol.33 , Issue.9 , pp. 1338-1345
    • Adams, J.1    Mansfield, M.J.2    Richard, D.J.3    Doxey, A.C.4
  • 18
    • 85032672184 scopus 로고    scopus 로고
    • Entropy-based consensus clustering for patient stratification
    • H. Liu, R. Zhao, H. Fang, F. Cheng, Y. Fu, and Y. Y. Liu, "Entropy-based consensus clustering for patient stratification, " Bioinformatics, vol. 33, no. 17, pp. 2691-2698, 2017.
    • (2017) Bioinformatics , vol.33 , Issue.17 , pp. 2691-2698
    • Liu, H.1    Zhao, R.2    Fang, H.3    Cheng, F.4    Fu, Y.5    Liu, Y.Y.6
  • 19
    • 84894903349 scopus 로고    scopus 로고
    • A survey on feature selection methods
    • G. Chandrashekar and F. Sahin, "A survey on feature selection methods, " Comput. Elect. Eng., vol. 40, no. 1, pp. 16-28, 2014.
    • (2014) Comput. Elect. Eng. , vol.40 , Issue.1 , pp. 16-28
    • Chandrashekar, G.1    Sahin, F.2
  • 20
    • 84870441851 scopus 로고    scopus 로고
    • A fast clustering-based feature subset selection algorithm for high-dimensional data
    • Jan.
    • Q. Song, J. Ni, and G. Wang, "A fast clustering-based feature subset selection algorithm for high-dimensional data, " IEEE Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 1-14, Jan. 2013.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.1 , pp. 1-14
    • Song, Q.1    Ni, J.2    Wang, G.3
  • 21
    • 84959493567 scopus 로고    scopus 로고
    • Clustering-guided sparse structural learning for unsupervised feature selection
    • Sep.
    • Z. Li, J. Liu, Y. Yang, X. Zhou, and H. Lu, "Clustering-guided sparse structural learning for unsupervised feature selection, "IEEE Trans. Knowl. Data Eng., vol. 26, no. 9, pp. 2138-2150, Sep. 2014.
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.9 , pp. 2138-2150
    • Li, Z.1    Liu, J.2    Yang, Y.3    Zhou, X.4    Lu, H.5
  • 23
    • 85019267862 scopus 로고    scopus 로고
    • Intelligent computational model for classification of sub-Golgi protein using oversampling and fisher feature selection methods
    • J. Ahmad, F. Javed, and M. Hayat, "Intelligent computational model for classification of sub-Golgi protein using oversampling and fisher feature selection methods, " Artif. Intell. Med., vol. 78, pp. 14-22, 2017.
    • (2017) Artif. Intell. Med. , vol.78 , pp. 14-22
    • Ahmad, J.1    Javed, F.2    Hayat, M.3
  • 24
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Apr.
    • H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering, " IEEE Trans. Knowl. Data Eng., vol. 17, no. 4, pp. 491-502, Apr. 2005.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 25
    • 78149289039 scopus 로고    scopus 로고
    • Feature selection for clustering-a filter solution
    • M. Dash et al., "Feature selection for clustering-a filter solution, " in Proc. IEEE Int. Conf. Data Mining, 2002, pp. 115-122.
    • (2002) Proc. IEEE Int. Conf. Data Mining , pp. 115-122
    • Dash, M.1
  • 26
    • 84919781928 scopus 로고    scopus 로고
    • Hybrid dimension reduction by integrating feature selection with feature extraction method for text clustering
    • K. K. Bharti and P. K. Singh, "Hybrid dimension reduction by integrating feature selection with feature extraction method for text clustering, " Expert Syst. Appl., vol. 42, no. 6, pp. 3105-3114, 2015.
    • (2015) Expert Syst. Appl. , vol.42 , Issue.6 , pp. 3105-3114
    • Bharti, K.K.1    Singh, P.K.2
  • 27
    • 84940462014 scopus 로고    scopus 로고
    • Feature selection using joint mutual information maximisation
    • M. Bennasar, Y. Hicks, and R. Setchi, "Feature selection using joint mutual information maximisation, " Expert Syst. Appl., vol. 42, no. 22, pp. 8520-8532, 2015.
    • (2015) Expert Syst. Appl. , vol.42 , Issue.22 , pp. 8520-8532
    • Bennasar, M.1    Hicks, Y.2    Setchi, R.3
  • 28
    • 84995360048 scopus 로고    scopus 로고
    • Hybrid feature selection algorithm using symmetrical uncertainty and a harmony search algorithm
    • S. S. Shreem, S. Abdullah, and M. Z. A. Nazri, "Hybrid feature selection algorithm using symmetrical uncertainty and a harmony search algorithm, " Int. J. Syst. Sci., vol. 47, no. 6, pp. 1312-1329, 2016.
    • (2016) Int. J. Syst. Sci. , vol.47 , Issue.6 , pp. 1312-1329
    • Shreem, S.S.1    Abdullah, S.2    Nazri, M.Z.A.3
  • 29
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Aug.
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 30
  • 32
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • L. V. D. Maaten and G. Hinton, "Visualizing data using t-SNE, " J. Mach. Learn. Res., vol. 9, pp. 2579-2605, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2579-2605
    • Maaten, L.V.D.1    Hinton, G.2
  • 33
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • Apr.
    • K. Deb, A. Pratap, S. Agarwal, and T. A. M. T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II, " IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182-197, Apr. 2002.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.A.M.T.4
  • 34
    • 34548108555 scopus 로고    scopus 로고
    • MOEA/D: A multiobjective evolutionary algorithm based on decomposition
    • Dec.
    • Q. Zhang and H. Li, "MOEA/D: A multiobjective evolutionary algorithm based on decomposition, " IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712-731, Dec. 2007.
    • (2007) IEEE Trans. Evol. Comput. , vol.11 , Issue.6 , pp. 712-731
    • Zhang, Q.1    Li, H.2
  • 36
    • 13844276694 scopus 로고    scopus 로고
    • Cluster analysis for gene expression data: A survey
    • Nov.
    • D. Jiang, C. Tang, and A. Zhang, "Cluster analysis for gene expression data: A survey, " IEEE Trans. Knowl. Data Eng., vol. 16, no. 11, pp. 1370-1386, Nov. 2004.
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , Issue.11 , pp. 1370-1386
    • Jiang, D.1    Tang, C.2    Zhang, A.3
  • 37
    • 77954195198 scopus 로고    scopus 로고
    • LCE: A link-based cluster ensemble method for improved gene expression data analysis
    • N. Iam-On, T. Boongoen, and S. Garrett, "LCE: A link-based cluster ensemble method for improved gene expression data analysis, " Bioinfor-matics, vol. 26, no. 12, pp. 1513-1519, 2010.
    • (2010) Bioinfor-matics , vol.26 , Issue.12 , pp. 1513-1519
    • Iam-On, N.1    Boongoen, T.2    Garrett, S.3
  • 38
    • 3142756516 scopus 로고    scopus 로고
    • Handling multiple objectives with particle swarm optimization
    • Jun.
    • C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, "Handling multiple objectives with particle swarm optimization, " IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 256-279, Jun. 2004.
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.3 , pp. 256-279
    • Coello, C.A.C.1    Pulido, G.T.2    Lechuga, M.S.3
  • 39
    • 84874613361 scopus 로고    scopus 로고
    • Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms
    • B. Trawiski, M. Smȩtek, Z. Telec, and T. Lasota, "Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms, " Int. J. Appl. Math. Comput. Sci., vol. 22, no. 4, pp. 867-881, 2012.
    • (2012) Int. J. Appl. Math. Comput. Sci. , vol.22 , Issue.4 , pp. 867-881
    • Trawiski, B.1    Smȩtek, M.2    Telec, Z.3    Lasota, T.4
  • 40
    • 84959852068 scopus 로고    scopus 로고
    • A novel preference articulation operator for the evolutionary multi-objective optimisation of classifiers in concealed weapons detection
    • S. Rostami, D. O'Reilly, A. Shenfield, and N. Bowring, "A novel preference articulation operator for the evolutionary multi-objective optimisation of classifiers in concealed weapons detection, " Inf. Sci., vol. 295, pp. 494-520, 2015.
    • (2015) Inf. Sci. , vol.295 , pp. 494-520
    • Rostami, S.1    O'Reilly, D.2    Shenfield, A.3    Bowring, N.4
  • 41
    • 0002515823 scopus 로고
    • Unsupervised mutual information criterion for elimination of overtraining in supervised multilayer networks
    • G. Deco, W. Finnoff, and H. G. Zimmermann, "Unsupervised mutual information criterion for elimination of overtraining in supervised multilayer networks, " Neural Comput., vol. 7, no. 1, pp. 86-107, 1995.
    • (1995) Neural Comput. , vol.7 , Issue.1 , pp. 86-107
    • Deco, G.1    Finnoff, W.2    Zimmermann, H.G.3
  • 42
    • 0035024021 scopus 로고    scopus 로고
    • Validating clustering for gene expression data
    • K. Y. Yeung, D. R. Haynor, and W. L. Ruzzo, "Validating clustering for gene expression data, " Bioinformatics, vol. 17, no. 4, pp. 309-318, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.4 , pp. 309-318
    • Yeung, K.Y.1    Haynor, D.R.2    Ruzzo, W.L.3
  • 43
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • L. J. Van't Veer et al., "Gene expression profiling predicts clinical outcome of breast cancer, " Nature, vol. 415, no. 6871, pp. 530-536, 2002.
    • (2002) Nature , vol.415 , Issue.6871 , pp. 530-536
    • Van't Veer, L.J.1
  • 44
    • 58149182724 scopus 로고    scopus 로고
    • NCBI GEO: Archive for high-throughput functional genomic data
    • T. Barrett et al., "NCBI GEO: Archive for high-throughput functional genomic data, " Nucleic Acids Res., D885-D890, 2009.
    • (2009) Nucleic Acids Res. , pp. D885-D890
    • Barrett, T.1
  • 45
    • 80054695444 scopus 로고    scopus 로고
    • The chemokine receptor CX 3 CR1 is directly involved in the arrest of breast cancer cells to the skeleton
    • W. L. Jamieson-Gladney et al., "The chemokine receptor CX 3 CR1 is directly involved in the arrest of breast cancer cells to the skeleton, " Breast Cancer Res., vol. 13, no. 5, 2011, Art. no. R91.
    • (2011) Breast Cancer Res. , vol.13 , Issue.5
    • Jamieson-Gladney, W.L.1
  • 46
    • 2942628182 scopus 로고    scopus 로고
    • ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance
    • M. C. Louie et al., "ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance, " Molec-ular Cellular Biol., vol. 24, no. 12, pp. 5157-5171, 2004.
    • (2004) Molec-ular Cellular Biol. , vol.24 , Issue.12 , pp. 5157-5171
    • Louie, M.C.1
  • 47
    • 46949098149 scopus 로고    scopus 로고
    • Hereditary breast cancer: New genetic developments, new therapeutic avenues
    • P. M. Campeau et al., "Hereditary breast cancer: New genetic developments, new therapeutic avenues, " Human Genetics, vol. 124, no. 1, pp. 31-42, 2008.
    • (2008) Human Genetics , vol.124 , Issue.1 , pp. 31-42
    • Campeau, P.M.1
  • 48
    • 64549090667 scopus 로고    scopus 로고
    • CDKN1C (p57T KIP2) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells
    • X. Yang et al., "CDKN1C (p57T KIP2) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells, " PLoS One, vol. 4, no. 4, 2009, Art. no. e5011.
    • (2009) PLoS One , vol.4 , Issue.4
    • Yang, X.1
  • 49
    • 77953271647 scopus 로고    scopus 로고
    • GPR56 plays varying roles in endogenous cancer progression
    • L. Xu et al., "GPR56 plays varying roles in endogenous cancer progression, " Clin. Exp. Metastasis, vol. 27, no. 4, pp. 241-249, 2010.
    • (2010) Clin. Exp. Metastasis , vol.27 , Issue.4 , pp. 241-249
    • Xu, L.1
  • 50
    • 84871741793 scopus 로고    scopus 로고
    • Validity of the proliferation markers Ki67, TOP2A, and RacGAP1 in molecular subgroups of breast can-cer
    • K. Milde-Langosch et al., "Validity of the proliferation markers Ki67, TOP2A, and RacGAP1 in molecular subgroups of breast can-cer, " Breast Cancer Res. Treatment, vol. 137, no. 1, pp. 57-67, 2013.
    • (2013) Breast Cancer Res. Treatment , vol.137 , Issue.1 , pp. 57-67
    • Milde-Langosch, K.1
  • 51
    • 38549163855 scopus 로고    scopus 로고
    • Clinical significance of the reduced expression of G protein gamma 7 (GNG7) in oesophageal cancer
    • M. Ohta et al., "Clinical significance of the reduced expression of G protein gamma 7 (GNG7) in oesophageal cancer, " Brit. J. Cancer, vol. 98, no. 2, pp. 410-417, 2008.
    • (2008) Brit. J. Cancer , vol.98 , Issue.2 , pp. 410-417
    • Ohta, M.1
  • 52
    • 84960456455 scopus 로고    scopus 로고
    • Lentivirus-mediated knockdown of CEP55 suppresses cell proliferation of breast cancer cells
    • Y. Wang, T. Jin, X. Dai, and J. Xu, "Lentivirus-mediated knockdown of CEP55 suppresses cell proliferation of breast cancer cells, " Biosci. Trends, vol. 10, no. 1, pp. 67-73, 2016.
    • (2016) Biosci. Trends , vol.10 , Issue.1 , pp. 67-73
    • Wang, Y.1    Jin, T.2    Dai, X.3    Xu, J.4
  • 53
    • 84905652884 scopus 로고    scopus 로고
    • RABbing cancer the wrong way
    • P. K. Khade and P. Giannakakou, "RABbing cancer the wrong way, " Proc. Nat. Acad. Sci., vol. 111, no. 31, pp. 11230-11231, 2015.
    • (2015) Proc. Nat. Acad. Sci. , vol.111 , Issue.31 , pp. 11230-11231
    • Khade, P.K.1    Giannakakou, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.