-
1
-
-
77955182563
-
Unifying logical and statistical AI
-
Pedro Domingos, Stanley Kok, Hoifung Poon, Matthew Richardson, and Parag Singla. Unifying logical and statistical AI. In AAAI, 2006.
-
(2006)
AAAI
-
-
Domingos, P.1
Kok, S.2
Poon, H.3
Richardson, M.4
Singla, P.5
-
2
-
-
70049098573
-
Church: A language for generative models
-
Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum. Church: A language for generative models. In UAI, 2008.
-
(2008)
UAI
-
-
Goodman, N.D.1
Mansinghka, V.K.2
Roy, D.M.3
Bonawitz, K.4
Tenenbaum, J.B.5
-
3
-
-
84901687683
-
The no-u-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo
-
Matthew D. Hoffman and Andrew Gelman. The no-u-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. JMLR, 15(1):1593-1623, 2014.
-
(2014)
JMLR
, vol.15
, Issue.1
, pp. 1593-1623
-
-
Hoffman, M.D.1
Gelman, A.2
-
6
-
-
84937860160
-
Automated variational inference for Gaussian process models
-
Trung V. Nguyen and Edwin V. Bonilla. Automated variational inference for Gaussian process models. In NIPS. 2014.
-
(2014)
NIPS
-
-
Nguyen, T.V.1
Bonilla, E.V.2
-
7
-
-
56349122110
-
Approximations for binary Gaussian process classification
-
Hannes Nickisch and Carl Edward Rasmussen. Approximations for binary Gaussian process classification. JMLR, 9(10), 2008.
-
(2008)
JMLR
, vol.9
, Issue.10
-
-
Nickisch, H.1
Rasmussen, C.E.2
-
9
-
-
84937892781
-
Distributed variational inference in sparse Gaussian process regression and latent variable models
-
Yarin Gal, Mark van der Wilk, and Carl Rasmussen. Distributed variational inference in sparse Gaussian process regression and latent variable models. In NIPS. 2014.
-
(2014)
NIPS
-
-
Gal, Y.1
Van Der Wilk, M.2
Rasmussen, C.3
-
10
-
-
84923281507
-
Collaborative multi-output Gaussian processes
-
Trung V. Nguyen and Edwin V. Bonilla. Collaborative multi-output Gaussian processes. In UAI, 2014.
-
(2014)
UAI
-
-
Nguyen, T.V.1
Bonilla, E.V.2
-
11
-
-
84919794162
-
Fast allocation of Gaussian process experts
-
Trung V. Nguyen and Edwin V. Bonilla. Fast allocation of Gaussian process experts. In ICML, 2014.
-
(2014)
ICML
-
-
Nguyen, T.V.1
Bonilla, E.V.2
-
12
-
-
29144453489
-
A unifying view of sparse approximate Gaussian process regression
-
Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approximate Gaussian process regression. JMLR, 6:1939-1959, 2005.
-
(2005)
JMLR
, vol.6
, pp. 1939-1959
-
-
Quiñonero-Candela, J.1
Rasmussen, C.E.2
-
13
-
-
80053168930
-
Variational learning of inducing variables in sparse Gaussian processes
-
Michalis Titsias. Variational learning of inducing variables in sparse Gaussian processes. In AISTATS, 2009.
-
(2009)
AISTATS
-
-
Titsias, M.1
-
16
-
-
0002891388
-
Locally weighted projection regression: An O (n) algorithm for incremental real time learning in high dimensional space
-
Sethu Vijayakumar and Stefan Schaal. Locally weighted projection regression: An O (n) algorithm for incremental real time learning in high dimensional space. In ICML, 2000.
-
(2000)
ICML
-
-
Vijayakumar, S.1
Schaal, S.2
-
17
-
-
85156260506
-
Fast sparse Gaussian process methods: The informative vector machine
-
Neil D Lawrence, Matthias Seeger, and Ralf Herbrich. Fast sparse Gaussian process methods: The informative vector machine. In NIPS, 2002.
-
(2002)
NIPS
-
-
Lawrence, N.D.1
Seeger, M.2
Herbrich, R.3
-
18
-
-
33646380511
-
Sparse Gaussian processes using pseudo-inputs
-
Ed Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs. In NIPS, 2006.
-
(2006)
NIPS
-
-
Snelson, E.1
Ghahramani, Z.2
-
19
-
-
79960146318
-
Computationally efficient convolved multiple output Gaussian processes
-
Mauricio A Álvarez and Neil D Lawrence. Computationally efficient convolved multiple output Gaussian processes. JMLR, 12(5):1459-1500, 2011.
-
(2011)
JMLR
, vol.12
, Issue.5
, pp. 1459-1500
-
-
Álvarez, M.A.1
Lawrence, N.D.2
-
20
-
-
84860634598
-
Efficient multioutput Gaussian processes through variational inducing kernels
-
Mauricio A. Álvarez, David Luengo, Michalis K. Titsias, and Neil D. Lawrence. Efficient multioutput Gaussian processes through variational inducing kernels. In AISTATS, 2010.
-
(2010)
AISTATS
-
-
Álvarez, M.A.1
Luengo, D.2
Titsias, M.K.3
Lawrence, N.D.4
-
21
-
-
63249135864
-
The variational Gaussian approximation revisited
-
Manfred Opper and Cédric Archambeau. The variational Gaussian approximation revisited. Neural Computation, 21(3):786-792, 2009.
-
(2009)
Neural Computation
, vol.21
, Issue.3
, pp. 786-792
-
-
Opper, M.1
Archambeau, C.2
-
23
-
-
85040231097
-
Scalable variational Gaussian process classification
-
James Hensman, Alexander Matthews, and Zoubin Ghahramani. Scalable variational Gaussian process classification. In AISTATS, 2015.
-
(2015)
AISTATS
-
-
Hensman, J.1
Matthews, A.2
Ghahramani, Z.3
-
27
-
-
0040843527
-
Log Gaussian Cox processes
-
Jesper Møller, Anne Randi Syversveen, and Rasmus Plenge Waagepetersen. Log Gaussian Cox processes. Scandinavian journal of statistics, 25(3):451-482, 1998.
-
(1998)
Scandinavian Journal of Statistics
, vol.25
, Issue.3
, pp. 451-482
-
-
Møller, J.1
Syversveen, A.R.2
Waagepetersen, R.P.3
-
29
-
-
0018342609
-
A note on the intervals between coal-mining disasters
-
R. G. Jarrett. A note on the intervals between coal-mining disasters. Biometrika, 66(1):191-193, 1979.
-
(1979)
Biometrika
, vol.66
, Issue.1
, pp. 191-193
-
-
Jarrett, R.G.1
|