메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 1414-1422

Scalable inference for Gaussian process models with black-box likelihoods

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); GAUSSIAN NOISE (ELECTRONIC); INFORMATION SCIENCE;

EID: 84965153826     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (64)

References (29)
  • 3
    • 84901687683 scopus 로고    scopus 로고
    • The no-u-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo
    • Matthew D. Hoffman and Andrew Gelman. The no-u-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. JMLR, 15(1):1593-1623, 2014.
    • (2014) JMLR , vol.15 , Issue.1 , pp. 1593-1623
    • Hoffman, M.D.1    Gelman, A.2
  • 6
    • 84937860160 scopus 로고    scopus 로고
    • Automated variational inference for Gaussian process models
    • Trung V. Nguyen and Edwin V. Bonilla. Automated variational inference for Gaussian process models. In NIPS. 2014.
    • (2014) NIPS
    • Nguyen, T.V.1    Bonilla, E.V.2
  • 7
    • 56349122110 scopus 로고    scopus 로고
    • Approximations for binary Gaussian process classification
    • Hannes Nickisch and Carl Edward Rasmussen. Approximations for binary Gaussian process classification. JMLR, 9(10), 2008.
    • (2008) JMLR , vol.9 , Issue.10
    • Nickisch, H.1    Rasmussen, C.E.2
  • 8
    • 84888155846 scopus 로고    scopus 로고
    • Gaussian processes for big data
    • James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big data. In UAI, 2013.
    • (2013) UAI
    • Hensman, J.1    Fusi, N.2    Lawrence, N.D.3
  • 9
    • 84937892781 scopus 로고    scopus 로고
    • Distributed variational inference in sparse Gaussian process regression and latent variable models
    • Yarin Gal, Mark van der Wilk, and Carl Rasmussen. Distributed variational inference in sparse Gaussian process regression and latent variable models. In NIPS. 2014.
    • (2014) NIPS
    • Gal, Y.1    Van Der Wilk, M.2    Rasmussen, C.3
  • 10
    • 84923281507 scopus 로고    scopus 로고
    • Collaborative multi-output Gaussian processes
    • Trung V. Nguyen and Edwin V. Bonilla. Collaborative multi-output Gaussian processes. In UAI, 2014.
    • (2014) UAI
    • Nguyen, T.V.1    Bonilla, E.V.2
  • 11
    • 84919794162 scopus 로고    scopus 로고
    • Fast allocation of Gaussian process experts
    • Trung V. Nguyen and Edwin V. Bonilla. Fast allocation of Gaussian process experts. In ICML, 2014.
    • (2014) ICML
    • Nguyen, T.V.1    Bonilla, E.V.2
  • 12
    • 29144453489 scopus 로고    scopus 로고
    • A unifying view of sparse approximate Gaussian process regression
    • Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approximate Gaussian process regression. JMLR, 6:1939-1959, 2005.
    • (2005) JMLR , vol.6 , pp. 1939-1959
    • Quiñonero-Candela, J.1    Rasmussen, C.E.2
  • 13
    • 80053168930 scopus 로고    scopus 로고
    • Variational learning of inducing variables in sparse Gaussian processes
    • Michalis Titsias. Variational learning of inducing variables in sparse Gaussian processes. In AISTATS, 2009.
    • (2009) AISTATS
    • Titsias, M.1
  • 16
    • 0002891388 scopus 로고    scopus 로고
    • Locally weighted projection regression: An O (n) algorithm for incremental real time learning in high dimensional space
    • Sethu Vijayakumar and Stefan Schaal. Locally weighted projection regression: An O (n) algorithm for incremental real time learning in high dimensional space. In ICML, 2000.
    • (2000) ICML
    • Vijayakumar, S.1    Schaal, S.2
  • 17
    • 85156260506 scopus 로고    scopus 로고
    • Fast sparse Gaussian process methods: The informative vector machine
    • Neil D Lawrence, Matthias Seeger, and Ralf Herbrich. Fast sparse Gaussian process methods: The informative vector machine. In NIPS, 2002.
    • (2002) NIPS
    • Lawrence, N.D.1    Seeger, M.2    Herbrich, R.3
  • 18
    • 33646380511 scopus 로고    scopus 로고
    • Sparse Gaussian processes using pseudo-inputs
    • Ed Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs. In NIPS, 2006.
    • (2006) NIPS
    • Snelson, E.1    Ghahramani, Z.2
  • 19
    • 79960146318 scopus 로고    scopus 로고
    • Computationally efficient convolved multiple output Gaussian processes
    • Mauricio A Álvarez and Neil D Lawrence. Computationally efficient convolved multiple output Gaussian processes. JMLR, 12(5):1459-1500, 2011.
    • (2011) JMLR , vol.12 , Issue.5 , pp. 1459-1500
    • Álvarez, M.A.1    Lawrence, N.D.2
  • 20
    • 84860634598 scopus 로고    scopus 로고
    • Efficient multioutput Gaussian processes through variational inducing kernels
    • Mauricio A. Álvarez, David Luengo, Michalis K. Titsias, and Neil D. Lawrence. Efficient multioutput Gaussian processes through variational inducing kernels. In AISTATS, 2010.
    • (2010) AISTATS
    • Álvarez, M.A.1    Luengo, D.2    Titsias, M.K.3    Lawrence, N.D.4
  • 21
    • 63249135864 scopus 로고    scopus 로고
    • The variational Gaussian approximation revisited
    • Manfred Opper and Cédric Archambeau. The variational Gaussian approximation revisited. Neural Computation, 21(3):786-792, 2009.
    • (2009) Neural Computation , vol.21 , Issue.3 , pp. 786-792
    • Opper, M.1    Archambeau, C.2
  • 23
    • 85040231097 scopus 로고    scopus 로고
    • Scalable variational Gaussian process classification
    • James Hensman, Alexander Matthews, and Zoubin Ghahramani. Scalable variational Gaussian process classification. In AISTATS, 2015.
    • (2015) AISTATS
    • Hensman, J.1    Matthews, A.2    Ghahramani, Z.3
  • 24
  • 29
    • 0018342609 scopus 로고
    • A note on the intervals between coal-mining disasters
    • R. G. Jarrett. A note on the intervals between coal-mining disasters. Biometrika, 66(1):191-193, 1979.
    • (1979) Biometrika , vol.66 , Issue.1 , pp. 191-193
    • Jarrett, R.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.