-
1
-
-
0000459353
-
The lack of a priori distinctions between learning algorithms
-
D.H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural computation, 8:1341-1390, 1996.
-
(1996)
Neural Computation
, vol.8
, pp. 1341-1390
-
-
Wolpert, D.H.1
-
2
-
-
68149165759
-
A new learning paradigm: Learning using privileged information
-
V. Vapnik and A. Vashist. A new learning paradigm: Learning using privileged information. Neural Networks, 22:544-557, 2009.
-
(2009)
Neural Networks
, vol.22
, pp. 544-557
-
-
Vapnik, V.1
Vashist, A.2
-
4
-
-
79959476836
-
Financial distress model prediction using SVM+
-
B. Ribeiro, C. Silva, A. Vieira, A. Gaspar-Cunha, and J.C. das Neves. Financial distress model prediction using SVM+. In International Joint Conference on Neural Networks (IJCNN), 2010.
-
(2010)
International Joint Conference on Neural Networks (IJCNN)
-
-
Ribeiro, B.1
Silva, C.2
Vieira, A.3
Gaspar-Cunha, A.4
Das Neves, J.C.5
-
7
-
-
84859162418
-
Privileged information for data clustering
-
J. Feyereisl and U. Aickelin. Privileged information for data clustering. Information Sciences, 194:4-23, 2012.
-
(2012)
Information Sciences
, vol.194
, pp. 4-23
-
-
Feyereisl, J.1
Aickelin, U.2
-
8
-
-
84877924976
-
Incorporating privileged information through metric learning
-
S. Fouad, P. Tino, S. Raychaudhury, and P. Schneider. Incorporating privileged information through metric learning. IEEE Transactions on Neural Networks and Learning Systems, 24:1086-1098, 2013.
-
(2013)
IEEE Transactions on Neural Networks and Learning Systems
, vol.24
, pp. 1086-1098
-
-
Fouad, S.1
Tino, P.2
Raychaudhury, S.3
Schneider, P.4
-
10
-
-
84896724050
-
Learning using privileged information: SVM+ and weighted SVM
-
M. Lapin, M. Hein, and B. Schiele. Learning using privileged information: SVM+ and weighted SVM. Neural Networks, 53:95-108, 2014.
-
(2014)
Neural Networks
, vol.53
, pp. 95-108
-
-
Lapin, M.1
Hein, M.2
Schiele, B.3
-
12
-
-
77951183269
-
Kernel conditional quantile estimation via reduction revisited
-
N. Quadrianto, K. Kersting, M. D. Reid, T. S. Caetano, and W. L. Buntine. Kernel conditional quantile estimation via reduction revisited. In International Conference on Data Mining (ICDM), 2009.
-
(2009)
International Conference on Data Mining (ICDM)
-
-
Quadrianto, N.1
Kersting, K.2
Reid, M.D.3
Caetano, T.S.4
Buntine, W.L.5
-
15
-
-
0003408420
-
-
MIT Press, Cambridge, MA, USA
-
B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
18
-
-
25444528713
-
Assessing approximate inference for binary Gaussian process classification
-
M. Kuss and C. E. Rasmussen. Assessing approximate inference for binary Gaussian process classification. Journal of Machine Learning Research, 6:1679-1704, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1679-1704
-
-
Kuss, M.1
Rasmussen, C.E.2
-
19
-
-
43449137394
-
Expectation propagation for exponential families
-
University of California, Berkeley
-
M. Seeger. Expectation propagation for exponential families. Technical report, Department of EECS, University of California, Berkeley, 2006.
-
(2006)
Technical Report, Department of EECS
-
-
Seeger, M.1
-
21
-
-
43049174575
-
Speeded-up robust features (SURF)
-
H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110:346-359, 2008.
-
(2008)
Computer Vision and Image Understanding
, vol.110
, pp. 346-359
-
-
Bay, H.1
Ess, A.2
Tuytelaars, T.3
Van Gool, L.4
-
22
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems (NIPS), 2013.
-
(2013)
Advances in Neural Information Processing Systems (NIPS)
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.4
Dean, J.5
-
25
-
-
84919881041
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In International Conference on Machine Learning (ICML), 2014.
-
(2014)
International Conference on Machine Learning (ICML)
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
26
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demsər. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsər, J.1
-
27
-
-
84873476296
-
Nested expectation propagation for Gaussian process classification with a multinomial probit likelihood
-
J. Riihimäki, P. Jylänki, and A. Vehtari. Nested Expectation Propagation for Gaussian Process Classification with a Multinomial Probit Likelihood. Journal of Machine Learning Research, 14:75-109, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 75-109
-
-
Riihimäki, J.1
Jylänki, P.2
Vehtari, A.3
|