메뉴 건너뛰기




Volumn 1, Issue January, 2014, Pages 837-845

Mind the nuisance: Gaussian process classification using privileged noise

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); INFORMATION SCIENCE; LEARNING SYSTEMS; NOISE POLLUTION;

EID: 84937846159     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (33)

References (28)
  • 1
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a priori distinctions between learning algorithms
    • D.H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural computation, 8:1341-1390, 1996.
    • (1996) Neural Computation , vol.8 , pp. 1341-1390
    • Wolpert, D.H.1
  • 2
    • 68149165759 scopus 로고    scopus 로고
    • A new learning paradigm: Learning using privileged information
    • V. Vapnik and A. Vashist. A new learning paradigm: Learning using privileged information. Neural Networks, 22:544-557, 2009.
    • (2009) Neural Networks , vol.22 , pp. 544-557
    • Vapnik, V.1    Vashist, A.2
  • 7
    • 84859162418 scopus 로고    scopus 로고
    • Privileged information for data clustering
    • J. Feyereisl and U. Aickelin. Privileged information for data clustering. Information Sciences, 194:4-23, 2012.
    • (2012) Information Sciences , vol.194 , pp. 4-23
    • Feyereisl, J.1    Aickelin, U.2
  • 10
    • 84896724050 scopus 로고    scopus 로고
    • Learning using privileged information: SVM+ and weighted SVM
    • M. Lapin, M. Hein, and B. Schiele. Learning using privileged information: SVM+ and weighted SVM. Neural Networks, 53:95-108, 2014.
    • (2014) Neural Networks , vol.53 , pp. 95-108
    • Lapin, M.1    Hein, M.2    Schiele, B.3
  • 18
    • 25444528713 scopus 로고    scopus 로고
    • Assessing approximate inference for binary Gaussian process classification
    • M. Kuss and C. E. Rasmussen. Assessing approximate inference for binary Gaussian process classification. Journal of Machine Learning Research, 6:1679-1704, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1679-1704
    • Kuss, M.1    Rasmussen, C.E.2
  • 19
    • 43449137394 scopus 로고    scopus 로고
    • Expectation propagation for exponential families
    • University of California, Berkeley
    • M. Seeger. Expectation propagation for exponential families. Technical report, Department of EECS, University of California, Berkeley, 2006.
    • (2006) Technical Report, Department of EECS
    • Seeger, M.1
  • 26
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsər. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsər, J.1
  • 27
    • 84873476296 scopus 로고    scopus 로고
    • Nested expectation propagation for Gaussian process classification with a multinomial probit likelihood
    • J. Riihimäki, P. Jylänki, and A. Vehtari. Nested Expectation Propagation for Gaussian Process Classification with a Multinomial Probit Likelihood. Journal of Machine Learning Research, 14:75-109, 2013.
    • (2013) Journal of Machine Learning Research , vol.14 , pp. 75-109
    • Riihimäki, J.1    Jylänki, P.2    Vehtari, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.