메뉴 건너뛰기




Volumn , Issue , 2014, Pages

Expectation propagation for nonstationary heteroscedastic Gaussian process regression

Author keywords

[No Author keywords available]

Indexed keywords

GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); MARKOV CHAINS;

EID: 84912550670     PISSN: 21610363     EISSN: 21610371     Source Type: Conference Proceeding    
DOI: 10.1109/MLSP.2014.6958906     Document Type: Conference Paper
Times cited : (60)

References (19)
  • 1
    • 56449091550 scopus 로고    scopus 로고
    • Gaussian process product models for nonparametric nonstationarity
    • R P Adams, O Stegle "Gaussian process product models for nonparametric nonstationarity," ICML, 2008, pp. 1-8.
    • (2008) ICML , pp. 1-8
    • Adams, R.P.1    Stegle, O.2
  • 2
    • 79952745784 scopus 로고    scopus 로고
    • Approximate marginals in latent gaussian models
    • B Cseke and T Heskes, "Approximate marginals in latent Gaussian models," JMLR, vol. 12, pp. 417-454, 2011.
    • JMLR , vol.12 , Issue.2011 , pp. 417-454
    • Cseke, B.1    Heskes, T.2
  • 5
    • 0040424226 scopus 로고    scopus 로고
    • Regression with input-dependent noise: A gaussian process treatment
    • P W Goldberg, C K I Williams, and C M Bishop, "Regression with input-dependent noise: A Gaussian process treatment," NIPS, vol. 10, pp. 493-499, 1997.
    • (1997) NIPS , vol.10 , pp. 493-499
    • Goldberg, P.W.1    Williams, C.K.I.2    Bishop, C.M.3
  • 6
    • 84855386927 scopus 로고    scopus 로고
    • Gaussian process regression with a student-t likelihood
    • P Jylänki, J Vanhatalo, and A Vehtari, "Gaussian process regression with a student-t likelihood," JMLR, vol. 12, pp. 3227-3257, 2011.
    • (2011) JMLR , vol.12 , pp. 3227-3257
    • Jylänki, P.1    Vanhatalo, J.2    Vehtari, A.3
  • 7
    • 34547984865 scopus 로고    scopus 로고
    • Most likely heteroscedastic gaussian process regression
    • K Kersting, C Plagemann, P Pfaff, and W Burgard, "Most likely heteroscedastic Gaussian process regression," ICML, 2007, pp. 393-400.
    • (2007) ICML , pp. 393-400
    • Kersting, K.1    Plagemann, C.2    Pfaff, P.3    Burgard, W.4
  • 8
    • 80053452289 scopus 로고    scopus 로고
    • Variational heteroscedastic gaussian process regression
    • M. Lazaro-Gredilla, and M. Titsias, "Variational heteroscedastic Gaussian process regression," ICML, 2011, pp. 841-848.
    • (2011) ICML , pp. 841-848
    • Lazaro-Gredilla, M.1    Titsias, M.2
  • 9
    • 31844456216 scopus 로고    scopus 로고
    • Heteroscedastic gaussian process regression
    • Q V Le, A J Smola, and S Canu, "Heteroscedastic Gaussian process regression," ICML, 2005, pp. 489-496.
    • (2005) ICML , pp. 489-496
    • Le, Q.V.1    Smola, A.J.2    Canu, S.3
  • 10
    • 0345978970 scopus 로고    scopus 로고
    • Expectation propagation for approximate bayesian inference
    • T P Minka, "Expectation propagation for approximate Bayesian inference," UAI, vol. 17, pp. 362-369, 2001.
    • (2001) UAI , vol.17 , pp. 362-369
    • Minka, T.P.1
  • 11
    • 85044247702 scopus 로고    scopus 로고
    • Robust regression with twinned gaussian processes
    • A Naish-Guzman and S Holden, "Robust regression with twinned Gaussian processes," NIPS, 2007, pp. 1065-1072.
    • (2007) NIPS , pp. 1065-1072
    • Naish-Guzman, A.1    Holden, S.2
  • 12
    • 0002628667 scopus 로고    scopus 로고
    • Regression and classification using gaussian process priors
    • Oxford University Press
    • R M Neal, "Regression and classification using Gaussian process priors," in Bayesian Statistics. 1998, vol. 6, pp. 475-501, Oxford University Press.
    • (1998) Bayesian Statistics , vol.6 , pp. 475-501
    • Neal, R.M.1
  • 13
    • 56349122110 scopus 로고    scopus 로고
    • Approximations for binary gaussian process classification
    • H Nickisch and C E Rasmussen, "Approximations for binary Gaussian process classification," JMLR, vol. 9, pp. 2035-2078, 2008.
    • (2008) JMLR , vol.9 , pp. 2035-2078
    • Nickisch, H.1    Rasmussen, C.E.2
  • 14
    • 84899028582 scopus 로고    scopus 로고
    • Nonstationary covariance functions for gaussian process regression
    • C J Paciorek and M J Schervish, "Nonstationary covariance functions for Gaussian process Regression," NIPS, vol. 16, pp. 273-280, 2004.
    • (2004) NIPS , vol.16 , pp. 273-280
    • Paciorek, C.J.1    Schervish, M.J.2
  • 16
    • 84873476296 scopus 로고    scopus 로고
    • Nested expectation propagation for gaussian process classification with a multinomial probit likelihood
    • J Riihimäki, P Jylänki, and A Vehtari, "Nested expectation propagation for Gaussian process classification with a multinomial probit likelihood," JMLR, vol. 14, pp. 75-109, 2013.
    • (2013) JMLR , vol.14 , pp. 75-109
    • Riihimäki, J.1    Jylänki, P.2    Vehtari, A.3
  • 17
    • 0001995852 scopus 로고
    • Some aspects of the spline smoothing approach to non-parametric regression curve fitting
    • B W Silverman, "Some aspects of the spline smoothing approach to non-parametric regression curve fitting," JRSSB, pp. 1-52, 1985.
    • (1985) JRSSB , pp. 1-52
    • Silverman, B.W.1
  • 19
    • 0036781790 scopus 로고    scopus 로고
    • Bayesian model assessment and comparison using cross-validation predictive densities
    • A Vehtari and J Lampinen, "Bayesian model assessment and comparison using cross-validation predictive densities," Neural Computation, vol. 14, no. 10, pp. 2439-2468, 2002.
    • (2002) Neural Computation , vol.14 , Issue.10 , pp. 2439-2468
    • Vehtari, A.1    Lampinen, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.