-
2
-
-
84947466043
-
Machine learning in medicine
-
Deo RC. Machine learning in medicine. Circulation 2015;132:1920-30.
-
(2015)
Circulation
, vol.132
, pp. 1920-1930
-
-
Deo, R.C.1
-
3
-
-
84990046464
-
Predicting the future-big data, machine learning, and clinical medicine
-
Obermeyer Z, Emanuel EJ. Predicting the future-big data, machine learning, and clinical medicine. N Engl J Med 2016;375:1216.
-
(2016)
N Engl J Med
, vol.375
, pp. 1216
-
-
Obermeyer, Z.1
Emanuel, E.J.2
-
4
-
-
0004255908
-
-
McGraw Hill series in computer science
-
Mitchell TM. Machine learning. McGraw Hill series in computer science, 1997.
-
(1997)
Machine Learning.
-
-
Mitchell, T.M.1
-
5
-
-
84867539048
-
A few useful things to know about machine learning
-
Domingos P. A few useful things to know about machine learning. Commun ACM 2012;55:78-87.
-
(2012)
Commun ACM
, vol.55
, pp. 78-87
-
-
Domingos, P.1
-
6
-
-
85020658081
-
Utilizing computerized provider order entry (cpoe) to reduce the garbage in garbage out effect in the cytology laboratory
-
Cuda J, Seigh L, Clark K, Monaco S, Pantanowitz L. Utilizing computerized provider order entry (CPOE) to reduce the garbage in garbage out effect in the cytology laboratory. J Am Soc Cytopathol 2016;5:S85.
-
(2016)
J Am Soc Cytopathol
, vol.5
, pp. S85
-
-
Cuda, J.1
Seigh, L.2
Clark, K.3
Monaco, S.4
Pantanowitz, L.5
-
7
-
-
84919773193
-
Do we need hundreds of classifiers to solve real world classification problems
-
Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems. J Mach Learn Res 2014;15:3133-81.
-
(2014)
J Mach Learn Res
, vol.15
, pp. 3133-3181
-
-
Fernández-Delgado, M.1
Cernadas, E.2
Barro, S.3
Amorim, D.4
-
8
-
-
85044704563
-
Comparison of machine learning techniques with classical statistical models in predicting health outcomes
-
Song X, Mitnitski A, Cox J, Rockwood K. Comparison of machine learning techniques with classical statistical models in predicting health outcomes. Medinfo 2004;11(Pt 1):736-40.
-
(2004)
Medinfo
, vol.11
, pp. 736-740
-
-
Song, X.1
Mitnitski, A.2
Cox, J.3
Rockwood, K.4
-
9
-
-
85048560245
-
Interactive machine learning for health informatics: When do we need the human-in-the-loop?
-
Holzinger A. Interactive machine learning for health informatics: When do we need the human-in-the-loop? Brain Inform 2016;3:119-31.
-
(2016)
Brain Inform
, vol.3
, pp. 119-131
-
-
Holzinger, A.1
-
11
-
-
85043693685
-
-
Archived at
-
Archived at: http://archive.is/z4cf.
-
-
-
-
12
-
-
84864758525
-
Evaluation: From precision, recall and f-measure to roc, informedness, markedness and correlation
-
Powers DM. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. J Mach Learn Tech 2011;2:37-63.
-
(2011)
J Mach Learn Tech
, vol.2
, pp. 37-63
-
-
Powers, D.M.1
-
13
-
-
84893750330
-
Prediction of different types of liver diseases using rule based classification model
-
Kumar Y, Sahoo G. Prediction of different types of liver diseases using rule based classification model. Technol Health Care 2013;21:417-32.
-
(2013)
Technol Health Care
, vol.21
, pp. 417-432
-
-
Kumar, Y.1
Sahoo, G.2
-
14
-
-
84984985889
-
Why should i trust you?: Explaining the predictions of any classifier
-
San Francisco, CA, USA: ACM
-
Ribeiro MT, Singh S, Guestrin C. Why should i trust you?: Explaining the predictions of any classifier. In KDD 2016, the Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA: ACM, 2016:1135-44.
-
(2016)
In KDD 2016, the Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 1135-1144
-
-
Ribeiro, M.T.1
Singh, S.2
Guestrin, C.3
-
17
-
-
77957308115
-
Serum albumin-bound proteomic signature for early detection and staging of hepatocarcinoma: Sample variability and data classification
-
Camaggi CM, Zavatto E, Gramantieri L, Camaggi V, Strocchi E, Righini R, et al. Serum albumin-bound proteomic signature for early detection and staging of hepatocarcinoma: Sample variability and data classification. Clin Chem Lab Med 2010;48:1319-26.
-
(2010)
Clin Chem Lab Med
, vol.48
, pp. 1319-1326
-
-
Camaggi, C.M.1
Zavatto, E.2
Gramantieri, L.3
Camaggi, V.4
Strocchi, E.5
Righini, R.6
-
18
-
-
77954227318
-
Integrated diagnostics: A conceptual framework with examples
-
Madabhushi A, Doyle S, Lee G, Basavanhally A, Monaco J, Masters S, et al. Integrated diagnostics: A conceptual framework with examples. Clin Chem Lab Med 2010;48:989-98.
-
(2010)
Clin Chem Lab Med
, vol.48
, pp. 989-998
-
-
Madabhushi, A.1
Doyle, S.2
Lee, G.3
Basavanhally, A.4
Monaco, J.5
Masters, S.6
-
19
-
-
85013696200
-
Artificial neural network approach in laboratory test reporting
-
Demirci F, Akan P, Kume T, Sisman AR, Erbayraktar Z, Sevinc S. Artificial neural network approach in laboratory test reporting. Am J Clin Pathol 2016;146:227-37.
-
(2016)
Am J Clin Pathol
, vol.146
, pp. 227-237
-
-
Demirci, F.1
Akan, P.2
Kume, T.3
Sisman, A.R.4
Erbayraktar, Z.5
Sevinc, S.6
-
20
-
-
85014848946
-
Machine learning will change medicine
-
Forsting M. Machine learning will change medicine. J Nucl Med 2017;58:357-8.
-
(2017)
J Nucl Med
, vol.58
, pp. 357-358
-
-
Forsting, M.1
-
21
-
-
84938791352
-
The power of asterisks
-
Horowitz GL. The power of asterisks. Clin Chem 2015;61: 1009-11.
-
(2015)
Clin Chem
, vol.61
, pp. 1009-1011
-
-
Horowitz, G.L.1
-
22
-
-
0025161699
-
Embedding expert systems in laboratory information systems
-
Connelly DP. Embedding expert systems in laboratory information systems. Am J Clin Pathol 1990;94(4 Suppl 1):S7-14.
-
(1990)
Am J Clin Pathol
, vol.94
, Issue.4
, pp. S7-14
-
-
Connelly, D.P.1
-
23
-
-
85010681863
-
The future of laboratory medicine in the era of precision medicine
-
Lippi G, Bassi A, Bovo C. The future of laboratory medicine in the era of precision medicine. J Lab Precis Med 2016;1:7.
-
(2016)
J Lab Precis Med
, vol.1
, pp. 7
-
-
Lippi, G.1
Bassi, A.2
Bovo, C.3
-
24
-
-
84870362207
-
Medicine unplugged: The future of laboratory medicine
-
Komatireddy R, Topol EJ. Medicine unplugged: The future of laboratory medicine. Clin Chem 2012;58:1644-7.
-
(2012)
Clin Chem
, vol.58
, pp. 1644-1647
-
-
Komatireddy, R.1
Topol, E.J.2
-
25
-
-
52449095787
-
Medicine 2.0: Social networking, collaboration, participation, apomediation, and openness
-
Eysenbach G. Medicine 2.0: Social networking, collaboration, participation, apomediation, and openness. J Med Internet Res 2008;10:e22.
-
(2008)
J Med Internet Res
, vol.10
, pp. e22
-
-
Eysenbach, G.1
-
26
-
-
84961678192
-
An unsupervised learning method to identify reference intervals from a clinical database
-
Poole S, Schroeder LF, Shah N. An unsupervised learning method to identify reference intervals from a clinical database. J Biomed Inform 2016;59:276-84.
-
(2016)
J Biomed Inform
, vol.59
, pp. 276-284
-
-
Poole, S.1
Schroeder, L.F.2
Shah, N.3
-
27
-
-
84992227117
-
Assessment of machinelearning techniques on large pathology sets to address assay redundancy in routine liver function test profiles
-
Lindbury BA, Richardson AM, Badrick T. Assessment of machinelearning techniques on large pathology sets to address assay redundancy in routine liver function test profiles. Diagnosis 2015;2:41-51.
-
(2015)
Diagnosis
, vol.2
, pp. 41-51
-
-
Lindbury, B.A.1
Richardson, A.M.2
Badrick, T.3
-
28
-
-
70349202399
-
Improving safety and eliminating redundant tests: Cutting costs in u.s. Hospitals
-
Jha AK, Chan DC, Ridgway AB, Franz C, Bates DW. Improving safety and eliminating redundant tests: Cutting costs in U.S. hospitals. Health Aff 2009;28:1475-84.
-
(2009)
Health Aff
, vol.28
, pp. 1475-1484
-
-
Jha, A.K.1
Chan, D.C.2
Ridgway, A.B.3
Franz, C.4
Bates, D.W.5
-
29
-
-
34248592213
-
Visualization and analysis of classifiers performance in multi-class medical data
-
Diri B, Albayrak S. Visualization and analysis of classifiers performance in multi-class medical data. Expert Syst Appl 2008;34:628-34.
-
(2008)
Expert Syst Appl
, vol.34
, pp. 628-634
-
-
Diri, B.1
Albayrak, S.2
-
30
-
-
84870555214
-
Multivariate outcome prediction in traumatic brain injury with focus on laboratory values
-
Nelson DW, Rudehill A, MacCallum RM, Holst A, Wanecek M, Weitzberg E, et al. Multivariate outcome prediction in traumatic brain injury with focus on laboratory values. J Neurotrauma 2012;29:2613-24.
-
(2012)
J Neurotrauma
, vol.29
, pp. 2613-2624
-
-
Nelson, D.W.1
Rudehill, A.2
MacCallum, R.M.3
Holst, A.4
Wanecek, M.5
Weitzberg, E.6
-
31
-
-
84881569536
-
Automatic prediction of rheumatoid arthritis disease activity from the electronic medical records
-
Lin C, Karlson EW, Canhao H, Miller TA, Dligach D, Chen PJ, et al. Automatic prediction of rheumatoid arthritis disease activity from the electronic medical records. PLoS One 2013;8:e69932.
-
(2013)
PLoS One
, vol.8
, pp. e69932
-
-
Lin, C.1
Karlson, E.W.2
Canhao, H.3
Miller, T.A.4
Dligach, D.5
Chen, P.J.6
-
32
-
-
84892397445
-
Improvement of adequate use of warfarin for the elderly using decision tree-based approaches
-
Liu KE, Lo CL, Hu YH. Improvement of adequate use of warfarin for the elderly using decision tree-based approaches. Methods Inf Med 2014;53:47-53.
-
(2014)
Methods Inf Med
, vol.53
, pp. 47-53
-
-
Liu, K.E.1
Lo, C.L.2
Hu, Y.H.3
-
33
-
-
84991830734
-
Population-level prection of type 2 diabetes from claims data and analysis of risk factors
-
Razavian N, Blecker S, Schmidt AM, Smith-McLallen A, Nigam S, Sontag D. Population-level prection of type 2 diabetes from claims data and analysis of risk factors. Big Data 2015;3:277-87
-
(2015)
Big Data
, vol.3
, pp. 277-287
-
-
Razavian, N.1
Blecker, S.2
Schmidt, A.M.3
Smith-McLallen, A.4
Nigam, S.5
Sontag, D.6
-
34
-
-
84976407069
-
Deep biomarkers of human aging: Application of deep neural networks to biomarker development
-
Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, et al. Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging 2016;8:1021.
-
(2016)
Aging
, vol.8
, pp. 1021
-
-
Putin, E.1
Mamoshina, P.2
Aliper, A.3
Korzinkin, M.4
Moskalev, A.5
Kolosov, A.6
-
35
-
-
84872869942
-
Urinecart, a machine learning method for establishment of review rules based on uf-1000i flow cytometry and dipstick or reflectance photometer
-
Yuan C, Ming C, Chengjin H. UrineCART, a machine learning method for establishment of review rules based on UF-1000i flow cytometry and dipstick or reflectance photometer. Clin Chem Lab Med 2012;50:2155-61.
-
(2012)
Clin Chem Lab Med
, vol.50
, pp. 2155-2161
-
-
Yuan, C.1
Ming, C.2
Chengjin, H.3
-
36
-
-
85021953748
-
Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges
-
Goldstein BA, Navar AM, Carter RE. Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges. Eur Heart J 2017;38:1805-14.
-
(2017)
Eur Heart J
, vol.38
, pp. 1805-1814
-
-
Goldstein, B.A.1
Navar, A.M.2
Carter, R.E.3
-
37
-
-
84942304336
-
Development and validation of new glomerular filtration rate predicting models for Chinese patients with type 2 diabetes
-
Chen J, Tang H, Lv L, Wang Y, Liu X, Lou T. Development and validation of new glomerular filtration rate predicting models for Chinese patients with type 2 diabetes. J Transl Med 2015;13:300-17
-
(2015)
J Transl Med
, vol.13
, pp. 300-317
-
-
Chen, J.1
Tang, H.2
Lv, L.3
Wang, Y.4
Liu, X.5
Lou, T.6
-
38
-
-
84940786379
-
Prediction of colorectal cancer diagnosis based on circulating plasma proteins
-
Surinova S, Choi M, Tao S, Schuffler PJ, Chang CY, Clough T, et al. Prediction of colorectal cancer diagnosis based on circulating plasma proteins. EMBO Mol Med 2015;7:1166-78.
-
(2015)
EMBO Mol Med
, vol.7
, pp. 1166-1178
-
-
Surinova, S.1
Choi, M.2
Tao, S.3
Schuffler, P.J.4
Chang, C.Y.5
Clough, T.6
-
39
-
-
84977658343
-
Cancers screening in an asymptomatic population by using multiple tumour markers
-
Wang HY, Hsieh CH, Wen CN, Wen YH, Chen CH, Lu JJ. Cancers screening in an asymptomatic population by using multiple tumour markers. PLoS One 2016;11:e0158285.
-
(2016)
PLoS One
, vol.11
, pp. e0158285
-
-
Wang, H.Y.1
Hsieh, C.H.2
Wen, C.N.3
Wen, Y.H.4
Chen, C.H.5
Lu, J.J.6
-
40
-
-
84979692017
-
Clinical chemistry in higher dimensions: Machine-learning and enhanced prediction from routine clinical chemistry data
-
Richardson A, Signor BM, Lidbury BA, Badrick T. Clinical chemistry in higher dimensions: Machine-learning and enhanced prediction from routine clinical chemistry data. Clin Biochem 2016;49:1213-20.
-
(2016)
Clin Biochem
, vol.49
, pp. 1213-1220
-
-
Richardson, A.1
Signor, B.M.2
Lidbury, B.A.3
Badrick, T.4
-
42
-
-
84884547259
-
Comparison of imputation methods for missing laboratory data in medicine
-
Waljee AK, Mukherjee A, Singal AG, Zhang Y, Warren J, Balis U, et al. Comparison of imputation methods for missing laboratory data in medicine. BMJ Open 2013;3:e002847.
-
(2013)
BMJ Open
, vol.3
, pp. e002847
-
-
Waljee, A.K.1
Mukherjee, A.2
Singal, A.G.3
Zhang, Y.4
Warren, J.5
Balis, U.6
-
43
-
-
85008429707
-
Improving diagnostic recognition of primary hyperparathyroidism with machine learning
-
Somnay YR, Craven M, McCoy KL, Carty SE, Wang TS, Greenberg CC, et al. Improving diagnostic recognition of primary hyperparathyroidism with machine learning. Surgery 2017;161:1113-21.
-
(2017)
Surgery
, vol.161
, pp. 1113-1121
-
-
Somnay, Y.R.1
Craven, M.2
McCoy, K.L.3
Carty, S.E.4
Wang, T.S.5
Greenberg, C.C.6
-
44
-
-
84994520344
-
Recommendation for the review of biological reference intervals in medical laboratories
-
Henny J, Vassault A, Boursier G, Vukasovic I, Mesko Brguljan P, Lohmander M, et al. Recommendation for the review of biological reference intervals in medical laboratories. Clin Chem Lab Med 2016;54:1893-900.
-
(2016)
Clin Chem Lab Med
, vol.54
, pp. 1893-1900
-
-
Henny, J.1
Vassault, A.2
Boursier, G.3
Vukasovic, I.4
Mesko Brguljan, P.5
Lohmander, M.6
-
45
-
-
85027869169
-
Unintended consequences of machine learning in medicine
-
Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. J Am Med Assoc 2017;318:517-8.
-
(2017)
J Am Med Assoc
, vol.318
, pp. 517-518
-
-
Cabitza, F.1
Rasoini, R.2
Gensini, G.F.3
|