메뉴 건너뛰기




Volumn 56, Issue 4, 2018, Pages 516-524

Machine learning in laboratory medicine: Waiting for the flood?

Author keywords

artificial intelligence; diagnostic AIDS; literature review; machine learning

Indexed keywords

CLINICAL MEDICINE; HUMAN; LABORATORY MEDICINE; MACHINE LEARNING; PRIORITY JOURNAL; REVIEW; LABORATORY TECHNIQUE; PROCEDURES; TRENDS;

EID: 85032590324     PISSN: 14346621     EISSN: 14374331     Source Type: Journal    
DOI: 10.1515/cclm-2017-0287     Document Type: Review
Times cited : (92)

References (45)
  • 1
    • 84957921914 scopus 로고    scopus 로고
    • Machine learning and the profession of medicine
    • Darcy AM, Louie AK, Roberts LW. Machine learning and the profession of medicine. J Am Med Assoc 2016;315:551-2.
    • (2016) J Am Med Assoc , vol.315 , pp. 551-552
    • Darcy, A.M.1    Louie, A.K.2    Roberts, L.W.3
  • 2
    • 84947466043 scopus 로고    scopus 로고
    • Machine learning in medicine
    • Deo RC. Machine learning in medicine. Circulation 2015;132:1920-30.
    • (2015) Circulation , vol.132 , pp. 1920-1930
    • Deo, R.C.1
  • 3
    • 84990046464 scopus 로고    scopus 로고
    • Predicting the future-big data, machine learning, and clinical medicine
    • Obermeyer Z, Emanuel EJ. Predicting the future-big data, machine learning, and clinical medicine. N Engl J Med 2016;375:1216.
    • (2016) N Engl J Med , vol.375 , pp. 1216
    • Obermeyer, Z.1    Emanuel, E.J.2
  • 4
    • 0004255908 scopus 로고    scopus 로고
    • McGraw Hill series in computer science
    • Mitchell TM. Machine learning. McGraw Hill series in computer science, 1997.
    • (1997) Machine Learning.
    • Mitchell, T.M.1
  • 5
    • 84867539048 scopus 로고    scopus 로고
    • A few useful things to know about machine learning
    • Domingos P. A few useful things to know about machine learning. Commun ACM 2012;55:78-87.
    • (2012) Commun ACM , vol.55 , pp. 78-87
    • Domingos, P.1
  • 6
    • 85020658081 scopus 로고    scopus 로고
    • Utilizing computerized provider order entry (cpoe) to reduce the garbage in garbage out effect in the cytology laboratory
    • Cuda J, Seigh L, Clark K, Monaco S, Pantanowitz L. Utilizing computerized provider order entry (CPOE) to reduce the garbage in garbage out effect in the cytology laboratory. J Am Soc Cytopathol 2016;5:S85.
    • (2016) J Am Soc Cytopathol , vol.5 , pp. S85
    • Cuda, J.1    Seigh, L.2    Clark, K.3    Monaco, S.4    Pantanowitz, L.5
  • 7
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems
    • Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems. J Mach Learn Res 2014;15:3133-81.
    • (2014) J Mach Learn Res , vol.15 , pp. 3133-3181
    • Fernández-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 8
    • 85044704563 scopus 로고    scopus 로고
    • Comparison of machine learning techniques with classical statistical models in predicting health outcomes
    • Song X, Mitnitski A, Cox J, Rockwood K. Comparison of machine learning techniques with classical statistical models in predicting health outcomes. Medinfo 2004;11(Pt 1):736-40.
    • (2004) Medinfo , vol.11 , pp. 736-740
    • Song, X.1    Mitnitski, A.2    Cox, J.3    Rockwood, K.4
  • 9
    • 85048560245 scopus 로고    scopus 로고
    • Interactive machine learning for health informatics: When do we need the human-in-the-loop?
    • Holzinger A. Interactive machine learning for health informatics: When do we need the human-in-the-loop? Brain Inform 2016;3:119-31.
    • (2016) Brain Inform , vol.3 , pp. 119-131
    • Holzinger, A.1
  • 11
    • 85043693685 scopus 로고    scopus 로고
    • Archived at
    • Archived at: http://archive.is/z4cf.
  • 12
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: From precision, recall and f-measure to roc, informedness, markedness and correlation
    • Powers DM. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. J Mach Learn Tech 2011;2:37-63.
    • (2011) J Mach Learn Tech , vol.2 , pp. 37-63
    • Powers, D.M.1
  • 13
    • 84893750330 scopus 로고    scopus 로고
    • Prediction of different types of liver diseases using rule based classification model
    • Kumar Y, Sahoo G. Prediction of different types of liver diseases using rule based classification model. Technol Health Care 2013;21:417-32.
    • (2013) Technol Health Care , vol.21 , pp. 417-432
    • Kumar, Y.1    Sahoo, G.2
  • 17
    • 77957308115 scopus 로고    scopus 로고
    • Serum albumin-bound proteomic signature for early detection and staging of hepatocarcinoma: Sample variability and data classification
    • Camaggi CM, Zavatto E, Gramantieri L, Camaggi V, Strocchi E, Righini R, et al. Serum albumin-bound proteomic signature for early detection and staging of hepatocarcinoma: Sample variability and data classification. Clin Chem Lab Med 2010;48:1319-26.
    • (2010) Clin Chem Lab Med , vol.48 , pp. 1319-1326
    • Camaggi, C.M.1    Zavatto, E.2    Gramantieri, L.3    Camaggi, V.4    Strocchi, E.5    Righini, R.6
  • 20
    • 85014848946 scopus 로고    scopus 로고
    • Machine learning will change medicine
    • Forsting M. Machine learning will change medicine. J Nucl Med 2017;58:357-8.
    • (2017) J Nucl Med , vol.58 , pp. 357-358
    • Forsting, M.1
  • 21
    • 84938791352 scopus 로고    scopus 로고
    • The power of asterisks
    • Horowitz GL. The power of asterisks. Clin Chem 2015;61: 1009-11.
    • (2015) Clin Chem , vol.61 , pp. 1009-1011
    • Horowitz, G.L.1
  • 22
    • 0025161699 scopus 로고
    • Embedding expert systems in laboratory information systems
    • Connelly DP. Embedding expert systems in laboratory information systems. Am J Clin Pathol 1990;94(4 Suppl 1):S7-14.
    • (1990) Am J Clin Pathol , vol.94 , Issue.4 , pp. S7-14
    • Connelly, D.P.1
  • 23
    • 85010681863 scopus 로고    scopus 로고
    • The future of laboratory medicine in the era of precision medicine
    • Lippi G, Bassi A, Bovo C. The future of laboratory medicine in the era of precision medicine. J Lab Precis Med 2016;1:7.
    • (2016) J Lab Precis Med , vol.1 , pp. 7
    • Lippi, G.1    Bassi, A.2    Bovo, C.3
  • 24
    • 84870362207 scopus 로고    scopus 로고
    • Medicine unplugged: The future of laboratory medicine
    • Komatireddy R, Topol EJ. Medicine unplugged: The future of laboratory medicine. Clin Chem 2012;58:1644-7.
    • (2012) Clin Chem , vol.58 , pp. 1644-1647
    • Komatireddy, R.1    Topol, E.J.2
  • 25
    • 52449095787 scopus 로고    scopus 로고
    • Medicine 2.0: Social networking, collaboration, participation, apomediation, and openness
    • Eysenbach G. Medicine 2.0: Social networking, collaboration, participation, apomediation, and openness. J Med Internet Res 2008;10:e22.
    • (2008) J Med Internet Res , vol.10 , pp. e22
    • Eysenbach, G.1
  • 26
    • 84961678192 scopus 로고    scopus 로고
    • An unsupervised learning method to identify reference intervals from a clinical database
    • Poole S, Schroeder LF, Shah N. An unsupervised learning method to identify reference intervals from a clinical database. J Biomed Inform 2016;59:276-84.
    • (2016) J Biomed Inform , vol.59 , pp. 276-284
    • Poole, S.1    Schroeder, L.F.2    Shah, N.3
  • 27
    • 84992227117 scopus 로고    scopus 로고
    • Assessment of machinelearning techniques on large pathology sets to address assay redundancy in routine liver function test profiles
    • Lindbury BA, Richardson AM, Badrick T. Assessment of machinelearning techniques on large pathology sets to address assay redundancy in routine liver function test profiles. Diagnosis 2015;2:41-51.
    • (2015) Diagnosis , vol.2 , pp. 41-51
    • Lindbury, B.A.1    Richardson, A.M.2    Badrick, T.3
  • 28
    • 70349202399 scopus 로고    scopus 로고
    • Improving safety and eliminating redundant tests: Cutting costs in u.s. Hospitals
    • Jha AK, Chan DC, Ridgway AB, Franz C, Bates DW. Improving safety and eliminating redundant tests: Cutting costs in U.S. hospitals. Health Aff 2009;28:1475-84.
    • (2009) Health Aff , vol.28 , pp. 1475-1484
    • Jha, A.K.1    Chan, D.C.2    Ridgway, A.B.3    Franz, C.4    Bates, D.W.5
  • 29
    • 34248592213 scopus 로고    scopus 로고
    • Visualization and analysis of classifiers performance in multi-class medical data
    • Diri B, Albayrak S. Visualization and analysis of classifiers performance in multi-class medical data. Expert Syst Appl 2008;34:628-34.
    • (2008) Expert Syst Appl , vol.34 , pp. 628-634
    • Diri, B.1    Albayrak, S.2
  • 30
  • 31
    • 84881569536 scopus 로고    scopus 로고
    • Automatic prediction of rheumatoid arthritis disease activity from the electronic medical records
    • Lin C, Karlson EW, Canhao H, Miller TA, Dligach D, Chen PJ, et al. Automatic prediction of rheumatoid arthritis disease activity from the electronic medical records. PLoS One 2013;8:e69932.
    • (2013) PLoS One , vol.8 , pp. e69932
    • Lin, C.1    Karlson, E.W.2    Canhao, H.3    Miller, T.A.4    Dligach, D.5    Chen, P.J.6
  • 32
    • 84892397445 scopus 로고    scopus 로고
    • Improvement of adequate use of warfarin for the elderly using decision tree-based approaches
    • Liu KE, Lo CL, Hu YH. Improvement of adequate use of warfarin for the elderly using decision tree-based approaches. Methods Inf Med 2014;53:47-53.
    • (2014) Methods Inf Med , vol.53 , pp. 47-53
    • Liu, K.E.1    Lo, C.L.2    Hu, Y.H.3
  • 33
    • 84991830734 scopus 로고    scopus 로고
    • Population-level prection of type 2 diabetes from claims data and analysis of risk factors
    • Razavian N, Blecker S, Schmidt AM, Smith-McLallen A, Nigam S, Sontag D. Population-level prection of type 2 diabetes from claims data and analysis of risk factors. Big Data 2015;3:277-87
    • (2015) Big Data , vol.3 , pp. 277-287
    • Razavian, N.1    Blecker, S.2    Schmidt, A.M.3    Smith-McLallen, A.4    Nigam, S.5    Sontag, D.6
  • 34
    • 84976407069 scopus 로고    scopus 로고
    • Deep biomarkers of human aging: Application of deep neural networks to biomarker development
    • Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, et al. Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging 2016;8:1021.
    • (2016) Aging , vol.8 , pp. 1021
    • Putin, E.1    Mamoshina, P.2    Aliper, A.3    Korzinkin, M.4    Moskalev, A.5    Kolosov, A.6
  • 35
    • 84872869942 scopus 로고    scopus 로고
    • Urinecart, a machine learning method for establishment of review rules based on uf-1000i flow cytometry and dipstick or reflectance photometer
    • Yuan C, Ming C, Chengjin H. UrineCART, a machine learning method for establishment of review rules based on UF-1000i flow cytometry and dipstick or reflectance photometer. Clin Chem Lab Med 2012;50:2155-61.
    • (2012) Clin Chem Lab Med , vol.50 , pp. 2155-2161
    • Yuan, C.1    Ming, C.2    Chengjin, H.3
  • 36
    • 85021953748 scopus 로고    scopus 로고
    • Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges
    • Goldstein BA, Navar AM, Carter RE. Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges. Eur Heart J 2017;38:1805-14.
    • (2017) Eur Heart J , vol.38 , pp. 1805-1814
    • Goldstein, B.A.1    Navar, A.M.2    Carter, R.E.3
  • 37
    • 84942304336 scopus 로고    scopus 로고
    • Development and validation of new glomerular filtration rate predicting models for Chinese patients with type 2 diabetes
    • Chen J, Tang H, Lv L, Wang Y, Liu X, Lou T. Development and validation of new glomerular filtration rate predicting models for Chinese patients with type 2 diabetes. J Transl Med 2015;13:300-17
    • (2015) J Transl Med , vol.13 , pp. 300-317
    • Chen, J.1    Tang, H.2    Lv, L.3    Wang, Y.4    Liu, X.5    Lou, T.6
  • 38
    • 84940786379 scopus 로고    scopus 로고
    • Prediction of colorectal cancer diagnosis based on circulating plasma proteins
    • Surinova S, Choi M, Tao S, Schuffler PJ, Chang CY, Clough T, et al. Prediction of colorectal cancer diagnosis based on circulating plasma proteins. EMBO Mol Med 2015;7:1166-78.
    • (2015) EMBO Mol Med , vol.7 , pp. 1166-1178
    • Surinova, S.1    Choi, M.2    Tao, S.3    Schuffler, P.J.4    Chang, C.Y.5    Clough, T.6
  • 39
    • 84977658343 scopus 로고    scopus 로고
    • Cancers screening in an asymptomatic population by using multiple tumour markers
    • Wang HY, Hsieh CH, Wen CN, Wen YH, Chen CH, Lu JJ. Cancers screening in an asymptomatic population by using multiple tumour markers. PLoS One 2016;11:e0158285.
    • (2016) PLoS One , vol.11 , pp. e0158285
    • Wang, H.Y.1    Hsieh, C.H.2    Wen, C.N.3    Wen, Y.H.4    Chen, C.H.5    Lu, J.J.6
  • 40
    • 84979692017 scopus 로고    scopus 로고
    • Clinical chemistry in higher dimensions: Machine-learning and enhanced prediction from routine clinical chemistry data
    • Richardson A, Signor BM, Lidbury BA, Badrick T. Clinical chemistry in higher dimensions: Machine-learning and enhanced prediction from routine clinical chemistry data. Clin Biochem 2016;49:1213-20.
    • (2016) Clin Biochem , vol.49 , pp. 1213-1220
    • Richardson, A.1    Signor, B.M.2    Lidbury, B.A.3    Badrick, T.4
  • 41
    • 85013740060 scopus 로고    scopus 로고
    • Using machine learning to predict laboratory test results
    • Luo Y, Szolovits P, Dighe AS, Baron JM. Using machine learning to predict laboratory test results. Am J Clin Pathol 2016;145:778-88.
    • (2016) Am J Clin Pathol , vol.145 , pp. 778-788
    • Luo, Y.1    Szolovits, P.2    Dighe, A.S.3    Baron, J.M.4
  • 43
    • 85008429707 scopus 로고    scopus 로고
    • Improving diagnostic recognition of primary hyperparathyroidism with machine learning
    • Somnay YR, Craven M, McCoy KL, Carty SE, Wang TS, Greenberg CC, et al. Improving diagnostic recognition of primary hyperparathyroidism with machine learning. Surgery 2017;161:1113-21.
    • (2017) Surgery , vol.161 , pp. 1113-1121
    • Somnay, Y.R.1    Craven, M.2    McCoy, K.L.3    Carty, S.E.4    Wang, T.S.5    Greenberg, C.C.6
  • 45
    • 85027869169 scopus 로고    scopus 로고
    • Unintended consequences of machine learning in medicine
    • Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. J Am Med Assoc 2017;318:517-8.
    • (2017) J Am Med Assoc , vol.318 , pp. 517-518
    • Cabitza, F.1    Rasoini, R.2    Gensini, G.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.