-
1
-
-
84861235431
-
Mining electronic health records: Towards better research applications, and clinical care
-
Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: Towards better research applications, and clinical care. Nat Rev Genet 2012; 13: 395-405.
-
(2012)
Nat Rev Genet
, vol.13
, pp. 395-405
-
-
Jensen, P.B.1
Jensen, L.J.2
Brunak, S.3
-
2
-
-
77953635924
-
Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches
-
Wu J, Roy J, Stewart WF. Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches. Med Care 2010; 48: S106-S113.
-
(2010)
Med Care
, vol.48
, pp. S106-S113
-
-
Wu, J.1
Roy, J.2
Stewart, W.F.3
-
3
-
-
84861344364
-
Electronic medical records as a tool in clinical pharmacology: Opportunities, and challenges
-
Roden DM, Xu H, Denny JC, Wilke RA. Electronic medical records as a tool in clinical pharmacology: opportunities, and challenges. Clin Pharmacol Ther 2012; 91: 1083-1086.
-
(2012)
Clin Pharmacol Ther
, vol.91
, pp. 1083-1086
-
-
Roden, D.M.1
Xu, H.2
Denny, J.C.3
Wilke, R.A.4
-
4
-
-
84872069531
-
Post-hospital syndrome-An acquired, transient condition of generalized risk
-
Krumholz HM. Post-hospital syndrome-An acquired, transient condition of generalized risk. N Engl J Med 2013; 368: 100-102.
-
(2013)
N Engl J Med
, vol.368
, pp. 100-102
-
-
Krumholz, H.M.1
-
5
-
-
84884212470
-
Predicting risk of hospitalization or death among patients receiving primary care in the Veterans Health Administration
-
Wang L, Porter B, Maynard C, et al. Predicting risk of hospitalization or death among patients receiving primary care in the Veterans Health Administration. Med Care 2013; 51: 368-373.
-
(2013)
Med Care
, vol.51
, pp. 368-373
-
-
Wang, L.1
Porter, B.2
Maynard, C.3
-
6
-
-
80052649965
-
Toward personalized care management of patients at risk: The diabetes case study
-
New York: ACM
-
Neuvirth H, Ozery-Flato M, Hu J, et al. Toward personalized care management of patients at risk: The diabetes case study. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery, and data mining, New York: ACM, 2011. pp. 395-403.
-
(2011)
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery, and Data Mining
, pp. 395-403
-
-
Neuvirth, H.1
Ozery-Flato, M.2
Hu, J.3
-
7
-
-
33644868473
-
Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age
-
Lloyd-Jones DM, Leip EP, Larson MG, et al. Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation 2006; 113: 791-798.
-
(2006)
Circulation
, vol.113
, pp. 791-798
-
-
Lloyd-Jones, D.M.1
Leip, E.P.2
Larson, M.G.3
-
8
-
-
84888421992
-
Comparative effectiveness for oral anti-diabetic treatments among newly diagnosed type 2 diabetics: Data-driven predictive analytics in healthcare
-
Maguire J, Dhar V. Comparative effectiveness for oral anti-diabetic treatments among newly diagnosed type 2 diabetics: Data-driven predictive analytics in healthcare. Health Syst 2013; 2: 73-92.
-
(2013)
Health Syst
, vol.2
, pp. 73-92
-
-
Maguire, J.1
Dhar, V.2
-
9
-
-
84940373302
-
Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data, and time series analysis
-
Perotte A, Ranganath R, Hirsch JS, et al. Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data, and time series analysis. J Am Med Inform Assoc 2015; 22: 872-880.
-
(2015)
J Am Med Inform Assoc
, vol.22
, pp. 872-880
-
-
Perotte, A.1
Ranganath, R.2
Hirsch, J.S.3
-
10
-
-
84897528157
-
-
Technical Report No. 609, Department of Statistics, University of Washington
-
Letham B, Rudin C, McCormick TH, Madigan D. Building interpretable classifiers with rules using Bayesian analysis. Technical Report No. 609, Department of Statistics, University of Washington, 2012.
-
(2012)
Building Interpretable Classifiers with Rules Using Bayesian Analysis
-
-
Letham, B.1
Rudin, C.2
McCormick, T.H.3
Madigan, D.4
-
11
-
-
84952015331
-
Learning data-driven patient risk stratification models for Clostridium difficile
-
ofu045
-
Wiens J, Campbell WN, Franklin ES, et al. Learning data-driven patient risk stratification models for Clostridium difficile. Open Forum Infect Dis 2014; 1: ofu045.
-
(2014)
Open Forum Infect Dis
, vol.1
-
-
Wiens, J.1
Campbell, W.N.2
Franklin, E.S.3
-
12
-
-
84880804037
-
Combining knowledge, and data driven insights for identifying risk factors using electronic health records
-
Sun J, Hu J, Luo D, et al. Combining knowledge, and data driven insights for identifying risk factors using electronic health records. AMIA Annu Symp Proc 2012; 2012: 901-910.
-
(2012)
AMIA Annu Symp Proc
, vol.2012
, pp. 901-910
-
-
Sun, J.1
Hu, J.2
Luo, D.3
-
13
-
-
84938704873
-
A targeted real-Time early warning score (TREWScore) for septic shock
-
299ra122
-
Henry KE, Hager DN, Pronovost PJ, Saria S. A targeted real-Time early warning score (TREWScore) for septic shock. Sci Transl Med 2015; 7: 299ra122.
-
(2015)
Sci Transl Med
, vol.7
-
-
Henry, K.E.1
Hager, D.N.2
Pronovost, P.J.3
Saria, S.4
-
14
-
-
84905990877
-
Big data in health care: Using analytics to identify, and manage high-risk, and high-cost patients
-
Bates DW, Saria S, Ohno-Machado L, et al. Big data in health care: Using analytics to identify, and manage high-risk, and high-cost patients. Health Aff (Millwood) 2014; 33: 1123-1131.
-
(2014)
Health Aff (Millwood
, vol.33
, pp. 1123-1131
-
-
Bates, D.W.1
Saria, S.2
Ohno-Machado, L.3
-
15
-
-
2342466734
-
Global prevalence of diabetes estimates for the year 2000 and projections for 2030
-
Wild S, Roglic G, Green A, et al. Global prevalence of diabetes estimates for the year 2000, and projections for 2030. Diabetes Care 2004; 27: 1047-1053.
-
(2004)
Diabetes Care
, vol.27
, pp. 1047-1053
-
-
Wild, S.1
Roglic, G.2
Green, A.3
-
16
-
-
84868290204
-
-
National diabetes statistics report: Estimates of diabetes, and its burden in the United States Atlanta, GA: US Department of Health, and Human Services 2014
-
Centers for Disease Control Prevention. National diabetes statistics report: Estimates of diabetes, and its burden in the United States, 2014. Atlanta, GA: US Department of Health, and Human Services 2014.
-
(2014)
Centers for Disease Control Prevention
-
-
-
17
-
-
1842863550
-
The diabetes prevention program (dpp) description of lifestyle intervention
-
Diabetes Prevention Program (DPP) Research Group
-
Diabetes Prevention Program (DPP) Research Group. The Diabetes Prevention Program (DPP) description of lifestyle intervention. Diabetes Care 2002; 25: 2165-2171.
-
(2002)
Diabetes Care
, vol.25
, pp. 2165-2171
-
-
-
18
-
-
0037034257
-
Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin
-
Knowler WC, Barrett-Connor E, Fowler SE. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393-403.
-
(2002)
N Engl J Med
, vol.346
, pp. 393-403
-
-
Knowler, W.C.1
Barrett-Connor, E.2
Fowler, S.E.3
-
19
-
-
0345707499
-
The finnish diabetes prevention study (dps): Lifestyle intervention, and 3-year results on diet, and physical activity
-
Lindström J, Louheranta A, Mannelin M, et al. The Finnish Diabetes Prevention Study (DPS): Lifestyle intervention, and 3-year results on diet, and physical activity. Diabetes Care 2003; 26: 3230-3236.
-
(2003)
Diabetes Care
, vol.26
, pp. 3230-3236
-
-
Lindström, J.1
Louheranta, A.2
Mannelin, M.3
-
20
-
-
43849111166
-
The long-Term effect of lifestyle interventions to prevent diabetes in the China da qing diabetes prevention study: A 20-year follow-up study
-
Li G, Zhang P, Wang J, et al. The long-Term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: A 20-year follow-up study. Lancet 2008; 371: 1783-1789.
-
(2008)
Lancet
, vol.371
, pp. 1783-1789
-
-
Li, G.1
Zhang, P.2
Wang, J.3
-
21
-
-
31844452061
-
The Indian Diabetes Prevention Programme shows that lifestyle modification, and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1
-
Ramachandran A, Snehalatha C, Mary S, et al. The Indian Diabetes Prevention Programme shows that lifestyle modification, and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 2006; 49: 289-297.
-
(2006)
Diabetologia
, vol.49
, pp. 289-297
-
-
Ramachandran, A.1
Snehalatha, C.2
Mary, S.3
-
22
-
-
0037806845
-
Costs associated with the primary prevention of type 2 diabetes mellitus in the diabetes prevention program
-
Hernan WH, Brandle M, Zhang P, et al. Costs associated with the primary prevention of type 2 diabetes mellitus in the diabetes prevention program. Diabetes Care 2003; 26: 36-47.
-
(2003)
Diabetes Care
, vol.26
, pp. 36-47
-
-
Hernan, W.H.1
Brandle, M.2
Zhang, P.3
-
23
-
-
66649113490
-
Two risk-scoring systems for predicting incident diabetes mellitus in US adults age 45 to 64 years
-
Kahn HS, Cheng YJ, Thompson TJ, et al. Two risk-scoring systems for predicting incident diabetes mellitus in US adults age 45 to 64 years. Ann Intern Med 2009; 150: 741-751.
-
(2009)
Ann Intern Med
, vol.150
, pp. 741-751
-
-
Kahn, H.S.1
Cheng, Y.J.2
Thompson, T.J.3
-
24
-
-
0037117467
-
Identification of persons at high risk for type 2 diabetes mellitus: Do we need the oral glucose tolerance test?
-
Stern MP, Williams K, Haffner SM. Identification of persons at high risk for type 2 diabetes mellitus: Do we need the oral glucose tolerance test?. Ann Intern Med 2002; 136: 575-581.
-
(2002)
Ann Intern Med
, vol.136
, pp. 575-581
-
-
Stern, M.P.1
Williams, K.2
Haffner, S.M.3
-
25
-
-
77950362329
-
Ausdrisk: An australian type 2 diabetes risk assessment tool based on demographic, lifestyle, and simple anthropometric measures
-
Chen L, Magliano DJ, Balkau B, et al. AUSDRISK: An Australian Type 2 Diabetes Risk Assessment Tool based on demographic, lifestyle, and simple anthropometric measures. Med J Aust 2010; 192: 197-202.
-
(2010)
Med J Aust
, vol.192
, pp. 197-202
-
-
Chen, L.1
Magliano, D.J.2
Balkau, B.3
-
26
-
-
0042743790
-
The diabetes risk score: A practical tool to predict type 2 diabetes risk
-
Lindström J, Tuomilehto J. The diabetes risk score: A practical tool to predict type 2 diabetes risk. Diabetes Care 2003; 26: 725-731.
-
(2003)
Diabetes Care
, vol.26
, pp. 725-731
-
-
Lindström, J.1
Tuomilehto, J.2
-
27
-
-
84860724038
-
Predicting costs with diabetes complications severity index in claims data
-
Chang H-Y, Weiner JP, Richards TM, et al. Predicting costs with diabetes complications severity index in claims data. Am J Manag Care 2012; 18: 213-219.
-
(2012)
Am J Manag Care
, vol.18
, pp. 213-219
-
-
Chang, H.-Y.1
Weiner, J.P.2
Richards, T.M.3
-
28
-
-
0142247208
-
Metformin in polycystic ovary syndrome: Systematic review, and meta-Analysis
-
Lord JM, Flight IHK, Norman RJ. Metformin in polycystic ovary syndrome: Systematic review, and meta-Analysis. BMJ 2003; 327: 951-953.
-
(2003)
BMJ
, vol.327
, pp. 951-953
-
-
Lord, J.M.1
Flight, I.H.K.2
Norman, R.J.3
-
29
-
-
84927922154
-
Standards of medical care in diabetes-2015 Abridged for primary care providers
-
American Diabetes Association
-
American Diabetes Association. Standards of medical care in diabetes-2015 Abridged for primary care providers. Clin Diabetes 2015; 33: 97-111.
-
(2015)
Clin Diabetes
, vol.33
, pp. 97-111
-
-
-
30
-
-
77956855172
-
Prediction models for incident Type 2 diabetes mellitus in the older population: KORA S4/F4 cohort study
-
Rathmann W, Kowall B, Heier M, et al. Prediction models for incident Type 2 diabetes mellitus in the older population: KORA S4/F4 cohort study. Diabet Med 2010; 27: 1116-1123.
-
(2010)
Diabet Med
, vol.27
, pp. 1116-1123
-
-
Rathmann, W.1
Kowall, B.2
Heier, M.3
-
31
-
-
34249654186
-
Prediction of incident diabetes mellitus in middle-Aged adults: The Framingham Offspring Study
-
Wilson PW, Meigs JB, Sullivan L, et al. Prediction of incident diabetes mellitus in middle-Aged adults: The Framingham Offspring Study. Arch Intern Med 2007; 167: 1068-1074.
-
(2007)
Arch Intern Med
, vol.167
, pp. 1068-1074
-
-
Wilson, P.W.1
Meigs, J.B.2
Sullivan, L.3
-
32
-
-
0042594649
-
C-reactive protein, and glycemic control in adults with diabetes
-
King DE, Mainous AG, Buchanan TA, Pearson WS. C-reactive protein, and glycemic control in adults with diabetes. Diabetes Care 2003; 26: 1535-1539.
-
(2003)
Diabetes Care
, vol.26
, pp. 1535-1539
-
-
King, D.E.1
Mainous, A.G.2
Buchanan, T.A.3
Pearson, W.S.4
-
33
-
-
84991766525
-
-
Agency for Healthcare Research, and Quality Healthcare Cost, and Utilization Project (HCUP). Rockville MD
-
Agency for Healthcare Research, and Quality. HCUP clinical classifications software for services, and procedures. Healthcare Cost, and Utilization Project (HCUP). Rockville, MD 2014.
-
(2014)
HCUP Clinical Classifications Software for Services, and Procedures
-
-
-
34
-
-
85194972808
-
Regression shrinkage, and selection via the lasso
-
Tibshirani R. Regression shrinkage, and selection via the lasso. J R Stat Soc Series B Methodol 1996; 58: 267-288.
-
(1996)
J R Stat Soc Series B Methodol
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
35
-
-
0041530047
-
Resampling-based multiple testing for microarray data analysis
-
Ge Y, Dudoit S, Speed TP. Resampling-based multiple testing for microarray data analysis. Test 2003; 12: 1-77.
-
(2003)
Test
, vol.12
, pp. 1-77
-
-
Ge, Y.1
Dudoit, S.2
Speed, T.P.3
-
36
-
-
77949503812
-
A fast hybrid algorithm for large-scale l 1-regularized logistic regression
-
Shi J, Yin W, Osher S, Sajda P. A fast hybrid algorithm for large-scale l 1-regularized logistic regression. J Mach Learn Res 2010; 11: 713-741.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 713-741
-
-
Shi, J.1
Yin, W.2
Osher, S.3
Sajda, P.4
-
37
-
-
0013161560
-
On feature selection: Learning with exponentially many irrelevant features as training examples
-
San Francisco, CA Morgan Kaufmann Publishers Inc
-
Ng AY. On feature selection: Learning with exponentially many irrelevant features as training examples. In: Proceedings of the International Conference on Machine Learning, San Francisco, CA: Morgan Kaufmann Publishers Inc., 1998. pp. 404-412.
-
(1998)
Proceedings of the International Conference on Machine Learning
, pp. 404-412
-
-
Ng, A.Y.1
-
38
-
-
80052660676
-
Dual coordinate descent methods for logistic regression, and maximum entropy models
-
Yu H-F, Huang F-L, Lin C-J. Dual coordinate descent methods for logistic regression, and maximum entropy models. Mach Learn 2011; 85: 41-75.
-
(2011)
Mach Learn
, vol.85
, pp. 41-75
-
-
Yu, H.-F.1
Huang, F.-L.2
Lin, C.-J.3
-
40
-
-
80052567230
-
Developing risk prediction models for type 2 diabetes: A systematic review of methodology, and reporting
-
Collins GS, Mallett S, Omar O, Yu L-M. Developing risk prediction models for type 2 diabetes: A systematic review of methodology, and reporting. BMC Med 2011; 9: 103.
-
(2011)
BMC Med
, vol.9
, pp. 103
-
-
Collins, G.S.1
Mallett, S.2
Omar, O.3
Yu, L.-M.4
-
41
-
-
84898972495
-
Confidence intervals for the area under the roc curve advances in neural information processing systems
-
Mohri C. Confidence intervals for the area under the ROC curve. In: Advances in Neural Information Processing Systems. Curran Associates, 2005, p. 305.
-
(2005)
Curran Associates
, pp. 305
-
-
Mohri, C.1
-
42
-
-
0032580320
-
Two-sided confidence intervals for the single proportion: Comparison of seven methods
-
Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Stat Med 1998; 17: 857-872.
-
(1998)
Stat Med
, vol.17
, pp. 857-872
-
-
Newcombe, R.G.1
-
43
-
-
34249753618
-
Support-vector networks
-
Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20: 273-297.
-
(1995)
Mach Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
44
-
-
84856275943
-
-
Wiley Interdiscip Rev Data Min Knowl Discov
-
Loh WY. Classification, and regression trees. Wiley Interdiscip Rev Data Min Knowl Discov 2011; 1: 14-23.
-
(2011)
Classification, and Regression Trees
, vol.1
, pp. 14-23
-
-
Loh, W.Y.1
-
45
-
-
33744584654
-
Induction of decision trees
-
Quinlan JR. Induction of decision trees. Mach Learn 1986; 1: 81-106.
-
(1986)
Mach Learn
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
46
-
-
84880788228
-
Type 2 diabetes risk forecasting from EMR data usingmachine learning
-
Mani S, Chen Y, Elasy T, et al. Type 2 diabetes risk forecasting from EMR data usingmachine learning. AMIA Annu Symp Proc 2012; 2012: 606-615.
-
(2012)
AMIA Annu Symp Proc
, vol.2012
, pp. 606-615
-
-
Mani, S.1
Chen, Y.2
Elasy, T.3
-
47
-
-
84901284560
-
Survival association rule mining towards type 2 diabetes risk assessment
-
Simon GJ, Schrom J, Castro MR, et al. Survival association rule mining towards type 2 diabetes risk assessment. AMIA Annu Symp Proc 2013; 2013: 1293-1302.
-
(2013)
AMIA Annu Symp Proc
, vol.2013
, pp. 1293-1302
-
-
Simon, G.J.1
Schrom, J.2
Castro, M.R.3
-
48
-
-
84872837690
-
Comparison of three data mining models for predicting diabetes or prediabetes by risk factors
-
Meng X-H, Huang Y-X, Rao D-P, et al. Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. Kaohsiung J Med Sci 2013; 29: 93-99.
-
(2013)
Kaohsiung J Med Sci
, vol.29
, pp. 93-99
-
-
Meng, X.-H.1
Huang, Y.-X.2
Rao, D.-P.3
-
51
-
-
84898978212
-
Boosting algorithms as gradient descent
-
MIT Press
-
Mason L, Baxter J, Bartlett PL, Frean MR. Boosting algorithms as gradient descent. In: Advances in Neural Information Processing Systems. MIT Press, 2000, pp. 512-518.
-
(2000)
Advances in Neural Information Processing Systems
, pp. 512-518
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.L.3
Frean, M.R.4
-
53
-
-
84907025230
-
Clinical risk prediction with multilinear sparse logistic regression
-
New York: ACM
-
Wang F, Zhang P, Qian B, et al. Clinical risk prediction with multilinear sparse logistic regression. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery, and Data Mining, New York: ACM, 2014. pp. 145-154.
-
(2014)
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery, and Data Mining
, pp. 145-154
-
-
Wang, F.1
Zhang, P.2
Qian, B.3
-
54
-
-
79953787924
-
Medical temporal-knowledge discovery via temporal abstraction
-
Moskovitch R, Shahar Y. Medical temporal-knowledge discovery via temporal abstraction. AMIA Annu Symp Proc 2009; 2009: 452-456.
-
(2009)
AMIA Annu Symp Proc
, vol.2009
, pp. 452-456
-
-
Moskovitch, R.1
Shahar, Y.2
-
56
-
-
67650080863
-
Prevention of diabetes selfmanagement program (PREDIAS): Effects on weight, metabolic risk factors, and behavioral outcomes
-
Kulzer B, Hermanns N, Gorges D, et al. Prevention of diabetes selfmanagement program (PREDIAS): Effects on weight, metabolic risk factors, and behavioral outcomes. Diabetes Care 2009; 32: 1143-1146.
-
(2009)
Diabetes Care
, vol.32
, pp. 1143-1146
-
-
Kulzer, B.1
Hermanns, N.2
Gorges, D.3
-
57
-
-
84885111813
-
-
National Center for Health Statistics. Hyattsville MD Available at
-
National Center for Health Statistics. Health, United States, 2012: With special feature on emergency care. Hyattsville, MD, 2013. Available at: www.cdc.gov/nchs/data/hus/hus12.pdf
-
(2013)
Health, United States 2012 with Special Feature on Emergency Care
-
-
-
58
-
-
0041382939
-
Relationship between body mass, and gastro-oesophageal reflux symptoms: The Bristol Helicobacter Project
-
Murray L, Johnston B, Lane A, et al. Relationship between body mass, and gastro-oesophageal reflux symptoms: The Bristol Helicobacter Project. Int J Epidemiol 2003; 32: 645-650.
-
(2003)
Int J Epidemiol
, vol.32
, pp. 645-650
-
-
Murray, L.1
Johnston, B.2
Lane, A.3
-
60
-
-
0036499482
-
Obstructive sleep apnea is independently associated with insulin resistance
-
Ip MSM, Lam B, Ng MMT, Lam WK, et al. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med 2002; 165: 670-676.
-
(2002)
Am J Respir Crit Care Med
, vol.165
, pp. 670-676
-
-
Ip, M.S.M.1
Lam, B.2
Ng, M.M.T.3
Lam, W.K.4
-
61
-
-
4444376099
-
Cardiovascular disease risk factors predict the development of type 2 Diabetes: The insulin resistance atherosclerosis study
-
D?Agostino RB, Hamman RF, Karter AJ, et al. Cardiovascular disease risk factors predict the development of type 2 Diabetes: The insulin resistance atherosclerosis study. Diabetes Care 2004; 27: 2234-2240.
-
(2004)
Diabetes Care
, vol.27
, pp. 2234-2240
-
-
D'Agostino, R.B.1
Hamman, R.F.2
Karter, A.J.3
-
62
-
-
0036634743
-
Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes
-
Hu FB, Stampfer MJ, Haffner SM, et al. Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes. Diabetes Care 2002; 25: 1129-1134.
-
(2002)
Diabetes Care
, vol.25
, pp. 1129-1134
-
-
Hu, F.B.1
Stampfer, M.J.2
Haffner, S.M.3
-
63
-
-
0036217052
-
Disordered fat storage, and mobilization in the pathogenesis of insulin resistance, and type 2 diabetes
-
Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage, and mobilization in the pathogenesis of insulin resistance, and type 2 diabetes. Endocr Rev 2002; 23: 201-229.
-
(2002)
Endocr Rev
, vol.23
, pp. 201-229
-
-
Lewis, G.F.1
Carpentier, A.2
Adeli, K.3
Giacca, A.4
-
64
-
-
23744454350
-
Elevated liver function tests in type 2 diabetes
-
Harris EH. Elevated liver function tests in type 2 diabetes. Clin Diabetes 2005; 23: 115-119.
-
(2005)
Clin Diabetes
, vol.23
, pp. 115-119
-
-
Harris, E.H.1
-
65
-
-
0033231294
-
Association of nonalcoholic fatty liver disease with insulin resistance
-
Marchesini G, Brizi M, Morselli-Labate AM, et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 1999; 107: 450-455.
-
(1999)
Am J Med
, vol.107
, pp. 450-455
-
-
Marchesini, G.1
Brizi, M.2
Morselli-Labate, A.M.3
-
66
-
-
84879341125
-
The relationship between type 2 diabetes mellitus, and related thyroid diseases
-
Wang C. The relationship between type 2 diabetes mellitus, and related thyroid diseases. J Diabetes Res 2013; 2013: 1-9.
-
(2013)
J Diabetes Res
, vol.2013
, pp. 1-9
-
-
Wang, C.1
|