메뉴 건너뛰기




Volumn 3, Issue 4, 2015, Pages 277-287

Population-level prediction of type 2 diabetes from claims data and analysis of risk factors

Author keywords

big data analytics; data mining; disease prediction; longitudinal study; machine learning; predictive analytics; risk assessment

Indexed keywords


EID: 84991830734     PISSN: 21676461     EISSN: 2167647X     Source Type: Journal    
DOI: 10.1089/big.2015.0020     Document Type: Article
Times cited : (171)

References (66)
  • 1
    • 84861235431 scopus 로고    scopus 로고
    • Mining electronic health records: Towards better research applications, and clinical care
    • Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: Towards better research applications, and clinical care. Nat Rev Genet 2012; 13: 395-405.
    • (2012) Nat Rev Genet , vol.13 , pp. 395-405
    • Jensen, P.B.1    Jensen, L.J.2    Brunak, S.3
  • 2
    • 77953635924 scopus 로고    scopus 로고
    • Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches
    • Wu J, Roy J, Stewart WF. Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches. Med Care 2010; 48: S106-S113.
    • (2010) Med Care , vol.48 , pp. S106-S113
    • Wu, J.1    Roy, J.2    Stewart, W.F.3
  • 3
    • 84861344364 scopus 로고    scopus 로고
    • Electronic medical records as a tool in clinical pharmacology: Opportunities, and challenges
    • Roden DM, Xu H, Denny JC, Wilke RA. Electronic medical records as a tool in clinical pharmacology: opportunities, and challenges. Clin Pharmacol Ther 2012; 91: 1083-1086.
    • (2012) Clin Pharmacol Ther , vol.91 , pp. 1083-1086
    • Roden, D.M.1    Xu, H.2    Denny, J.C.3    Wilke, R.A.4
  • 4
    • 84872069531 scopus 로고    scopus 로고
    • Post-hospital syndrome-An acquired, transient condition of generalized risk
    • Krumholz HM. Post-hospital syndrome-An acquired, transient condition of generalized risk. N Engl J Med 2013; 368: 100-102.
    • (2013) N Engl J Med , vol.368 , pp. 100-102
    • Krumholz, H.M.1
  • 5
    • 84884212470 scopus 로고    scopus 로고
    • Predicting risk of hospitalization or death among patients receiving primary care in the Veterans Health Administration
    • Wang L, Porter B, Maynard C, et al. Predicting risk of hospitalization or death among patients receiving primary care in the Veterans Health Administration. Med Care 2013; 51: 368-373.
    • (2013) Med Care , vol.51 , pp. 368-373
    • Wang, L.1    Porter, B.2    Maynard, C.3
  • 7
    • 33644868473 scopus 로고    scopus 로고
    • Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age
    • Lloyd-Jones DM, Leip EP, Larson MG, et al. Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation 2006; 113: 791-798.
    • (2006) Circulation , vol.113 , pp. 791-798
    • Lloyd-Jones, D.M.1    Leip, E.P.2    Larson, M.G.3
  • 8
    • 84888421992 scopus 로고    scopus 로고
    • Comparative effectiveness for oral anti-diabetic treatments among newly diagnosed type 2 diabetics: Data-driven predictive analytics in healthcare
    • Maguire J, Dhar V. Comparative effectiveness for oral anti-diabetic treatments among newly diagnosed type 2 diabetics: Data-driven predictive analytics in healthcare. Health Syst 2013; 2: 73-92.
    • (2013) Health Syst , vol.2 , pp. 73-92
    • Maguire, J.1    Dhar, V.2
  • 9
    • 84940373302 scopus 로고    scopus 로고
    • Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data, and time series analysis
    • Perotte A, Ranganath R, Hirsch JS, et al. Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data, and time series analysis. J Am Med Inform Assoc 2015; 22: 872-880.
    • (2015) J Am Med Inform Assoc , vol.22 , pp. 872-880
    • Perotte, A.1    Ranganath, R.2    Hirsch, J.S.3
  • 11
    • 84952015331 scopus 로고    scopus 로고
    • Learning data-driven patient risk stratification models for Clostridium difficile
    • ofu045
    • Wiens J, Campbell WN, Franklin ES, et al. Learning data-driven patient risk stratification models for Clostridium difficile. Open Forum Infect Dis 2014; 1: ofu045.
    • (2014) Open Forum Infect Dis , vol.1
    • Wiens, J.1    Campbell, W.N.2    Franklin, E.S.3
  • 12
    • 84880804037 scopus 로고    scopus 로고
    • Combining knowledge, and data driven insights for identifying risk factors using electronic health records
    • Sun J, Hu J, Luo D, et al. Combining knowledge, and data driven insights for identifying risk factors using electronic health records. AMIA Annu Symp Proc 2012; 2012: 901-910.
    • (2012) AMIA Annu Symp Proc , vol.2012 , pp. 901-910
    • Sun, J.1    Hu, J.2    Luo, D.3
  • 13
    • 84938704873 scopus 로고    scopus 로고
    • A targeted real-Time early warning score (TREWScore) for septic shock
    • 299ra122
    • Henry KE, Hager DN, Pronovost PJ, Saria S. A targeted real-Time early warning score (TREWScore) for septic shock. Sci Transl Med 2015; 7: 299ra122.
    • (2015) Sci Transl Med , vol.7
    • Henry, K.E.1    Hager, D.N.2    Pronovost, P.J.3    Saria, S.4
  • 14
    • 84905990877 scopus 로고    scopus 로고
    • Big data in health care: Using analytics to identify, and manage high-risk, and high-cost patients
    • Bates DW, Saria S, Ohno-Machado L, et al. Big data in health care: Using analytics to identify, and manage high-risk, and high-cost patients. Health Aff (Millwood) 2014; 33: 1123-1131.
    • (2014) Health Aff (Millwood , vol.33 , pp. 1123-1131
    • Bates, D.W.1    Saria, S.2    Ohno-Machado, L.3
  • 15
    • 2342466734 scopus 로고    scopus 로고
    • Global prevalence of diabetes estimates for the year 2000 and projections for 2030
    • Wild S, Roglic G, Green A, et al. Global prevalence of diabetes estimates for the year 2000, and projections for 2030. Diabetes Care 2004; 27: 1047-1053.
    • (2004) Diabetes Care , vol.27 , pp. 1047-1053
    • Wild, S.1    Roglic, G.2    Green, A.3
  • 16
    • 84868290204 scopus 로고    scopus 로고
    • National diabetes statistics report: Estimates of diabetes, and its burden in the United States Atlanta, GA: US Department of Health, and Human Services 2014
    • Centers for Disease Control Prevention. National diabetes statistics report: Estimates of diabetes, and its burden in the United States, 2014. Atlanta, GA: US Department of Health, and Human Services 2014.
    • (2014) Centers for Disease Control Prevention
  • 17
    • 1842863550 scopus 로고    scopus 로고
    • The diabetes prevention program (dpp) description of lifestyle intervention
    • Diabetes Prevention Program (DPP) Research Group
    • Diabetes Prevention Program (DPP) Research Group. The Diabetes Prevention Program (DPP) description of lifestyle intervention. Diabetes Care 2002; 25: 2165-2171.
    • (2002) Diabetes Care , vol.25 , pp. 2165-2171
  • 18
    • 0037034257 scopus 로고    scopus 로고
    • Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin
    • Knowler WC, Barrett-Connor E, Fowler SE. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393-403.
    • (2002) N Engl J Med , vol.346 , pp. 393-403
    • Knowler, W.C.1    Barrett-Connor, E.2    Fowler, S.E.3
  • 19
    • 0345707499 scopus 로고    scopus 로고
    • The finnish diabetes prevention study (dps): Lifestyle intervention, and 3-year results on diet, and physical activity
    • Lindström J, Louheranta A, Mannelin M, et al. The Finnish Diabetes Prevention Study (DPS): Lifestyle intervention, and 3-year results on diet, and physical activity. Diabetes Care 2003; 26: 3230-3236.
    • (2003) Diabetes Care , vol.26 , pp. 3230-3236
    • Lindström, J.1    Louheranta, A.2    Mannelin, M.3
  • 20
    • 43849111166 scopus 로고    scopus 로고
    • The long-Term effect of lifestyle interventions to prevent diabetes in the China da qing diabetes prevention study: A 20-year follow-up study
    • Li G, Zhang P, Wang J, et al. The long-Term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: A 20-year follow-up study. Lancet 2008; 371: 1783-1789.
    • (2008) Lancet , vol.371 , pp. 1783-1789
    • Li, G.1    Zhang, P.2    Wang, J.3
  • 21
    • 31844452061 scopus 로고    scopus 로고
    • The Indian Diabetes Prevention Programme shows that lifestyle modification, and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1
    • Ramachandran A, Snehalatha C, Mary S, et al. The Indian Diabetes Prevention Programme shows that lifestyle modification, and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 2006; 49: 289-297.
    • (2006) Diabetologia , vol.49 , pp. 289-297
    • Ramachandran, A.1    Snehalatha, C.2    Mary, S.3
  • 22
    • 0037806845 scopus 로고    scopus 로고
    • Costs associated with the primary prevention of type 2 diabetes mellitus in the diabetes prevention program
    • Hernan WH, Brandle M, Zhang P, et al. Costs associated with the primary prevention of type 2 diabetes mellitus in the diabetes prevention program. Diabetes Care 2003; 26: 36-47.
    • (2003) Diabetes Care , vol.26 , pp. 36-47
    • Hernan, W.H.1    Brandle, M.2    Zhang, P.3
  • 23
    • 66649113490 scopus 로고    scopus 로고
    • Two risk-scoring systems for predicting incident diabetes mellitus in US adults age 45 to 64 years
    • Kahn HS, Cheng YJ, Thompson TJ, et al. Two risk-scoring systems for predicting incident diabetes mellitus in US adults age 45 to 64 years. Ann Intern Med 2009; 150: 741-751.
    • (2009) Ann Intern Med , vol.150 , pp. 741-751
    • Kahn, H.S.1    Cheng, Y.J.2    Thompson, T.J.3
  • 24
    • 0037117467 scopus 로고    scopus 로고
    • Identification of persons at high risk for type 2 diabetes mellitus: Do we need the oral glucose tolerance test?
    • Stern MP, Williams K, Haffner SM. Identification of persons at high risk for type 2 diabetes mellitus: Do we need the oral glucose tolerance test?. Ann Intern Med 2002; 136: 575-581.
    • (2002) Ann Intern Med , vol.136 , pp. 575-581
    • Stern, M.P.1    Williams, K.2    Haffner, S.M.3
  • 25
    • 77950362329 scopus 로고    scopus 로고
    • Ausdrisk: An australian type 2 diabetes risk assessment tool based on demographic, lifestyle, and simple anthropometric measures
    • Chen L, Magliano DJ, Balkau B, et al. AUSDRISK: An Australian Type 2 Diabetes Risk Assessment Tool based on demographic, lifestyle, and simple anthropometric measures. Med J Aust 2010; 192: 197-202.
    • (2010) Med J Aust , vol.192 , pp. 197-202
    • Chen, L.1    Magliano, D.J.2    Balkau, B.3
  • 26
    • 0042743790 scopus 로고    scopus 로고
    • The diabetes risk score: A practical tool to predict type 2 diabetes risk
    • Lindström J, Tuomilehto J. The diabetes risk score: A practical tool to predict type 2 diabetes risk. Diabetes Care 2003; 26: 725-731.
    • (2003) Diabetes Care , vol.26 , pp. 725-731
    • Lindström, J.1    Tuomilehto, J.2
  • 27
    • 84860724038 scopus 로고    scopus 로고
    • Predicting costs with diabetes complications severity index in claims data
    • Chang H-Y, Weiner JP, Richards TM, et al. Predicting costs with diabetes complications severity index in claims data. Am J Manag Care 2012; 18: 213-219.
    • (2012) Am J Manag Care , vol.18 , pp. 213-219
    • Chang, H.-Y.1    Weiner, J.P.2    Richards, T.M.3
  • 28
    • 0142247208 scopus 로고    scopus 로고
    • Metformin in polycystic ovary syndrome: Systematic review, and meta-Analysis
    • Lord JM, Flight IHK, Norman RJ. Metformin in polycystic ovary syndrome: Systematic review, and meta-Analysis. BMJ 2003; 327: 951-953.
    • (2003) BMJ , vol.327 , pp. 951-953
    • Lord, J.M.1    Flight, I.H.K.2    Norman, R.J.3
  • 29
    • 84927922154 scopus 로고    scopus 로고
    • Standards of medical care in diabetes-2015 Abridged for primary care providers
    • American Diabetes Association
    • American Diabetes Association. Standards of medical care in diabetes-2015 Abridged for primary care providers. Clin Diabetes 2015; 33: 97-111.
    • (2015) Clin Diabetes , vol.33 , pp. 97-111
  • 30
    • 77956855172 scopus 로고    scopus 로고
    • Prediction models for incident Type 2 diabetes mellitus in the older population: KORA S4/F4 cohort study
    • Rathmann W, Kowall B, Heier M, et al. Prediction models for incident Type 2 diabetes mellitus in the older population: KORA S4/F4 cohort study. Diabet Med 2010; 27: 1116-1123.
    • (2010) Diabet Med , vol.27 , pp. 1116-1123
    • Rathmann, W.1    Kowall, B.2    Heier, M.3
  • 31
    • 34249654186 scopus 로고    scopus 로고
    • Prediction of incident diabetes mellitus in middle-Aged adults: The Framingham Offspring Study
    • Wilson PW, Meigs JB, Sullivan L, et al. Prediction of incident diabetes mellitus in middle-Aged adults: The Framingham Offspring Study. Arch Intern Med 2007; 167: 1068-1074.
    • (2007) Arch Intern Med , vol.167 , pp. 1068-1074
    • Wilson, P.W.1    Meigs, J.B.2    Sullivan, L.3
  • 32
    • 0042594649 scopus 로고    scopus 로고
    • C-reactive protein, and glycemic control in adults with diabetes
    • King DE, Mainous AG, Buchanan TA, Pearson WS. C-reactive protein, and glycemic control in adults with diabetes. Diabetes Care 2003; 26: 1535-1539.
    • (2003) Diabetes Care , vol.26 , pp. 1535-1539
    • King, D.E.1    Mainous, A.G.2    Buchanan, T.A.3    Pearson, W.S.4
  • 33
    • 84991766525 scopus 로고    scopus 로고
    • Agency for Healthcare Research, and Quality Healthcare Cost, and Utilization Project (HCUP). Rockville MD
    • Agency for Healthcare Research, and Quality. HCUP clinical classifications software for services, and procedures. Healthcare Cost, and Utilization Project (HCUP). Rockville, MD 2014.
    • (2014) HCUP Clinical Classifications Software for Services, and Procedures
  • 34
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage, and selection via the lasso
    • Tibshirani R. Regression shrinkage, and selection via the lasso. J R Stat Soc Series B Methodol 1996; 58: 267-288.
    • (1996) J R Stat Soc Series B Methodol , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 35
    • 0041530047 scopus 로고    scopus 로고
    • Resampling-based multiple testing for microarray data analysis
    • Ge Y, Dudoit S, Speed TP. Resampling-based multiple testing for microarray data analysis. Test 2003; 12: 1-77.
    • (2003) Test , vol.12 , pp. 1-77
    • Ge, Y.1    Dudoit, S.2    Speed, T.P.3
  • 36
    • 77949503812 scopus 로고    scopus 로고
    • A fast hybrid algorithm for large-scale l 1-regularized logistic regression
    • Shi J, Yin W, Osher S, Sajda P. A fast hybrid algorithm for large-scale l 1-regularized logistic regression. J Mach Learn Res 2010; 11: 713-741.
    • (2010) J Mach Learn Res , vol.11 , pp. 713-741
    • Shi, J.1    Yin, W.2    Osher, S.3    Sajda, P.4
  • 37
    • 0013161560 scopus 로고    scopus 로고
    • On feature selection: Learning with exponentially many irrelevant features as training examples
    • San Francisco, CA Morgan Kaufmann Publishers Inc
    • Ng AY. On feature selection: Learning with exponentially many irrelevant features as training examples. In: Proceedings of the International Conference on Machine Learning, San Francisco, CA: Morgan Kaufmann Publishers Inc., 1998. pp. 404-412.
    • (1998) Proceedings of the International Conference on Machine Learning , pp. 404-412
    • Ng, A.Y.1
  • 38
    • 80052660676 scopus 로고    scopus 로고
    • Dual coordinate descent methods for logistic regression, and maximum entropy models
    • Yu H-F, Huang F-L, Lin C-J. Dual coordinate descent methods for logistic regression, and maximum entropy models. Mach Learn 2011; 85: 41-75.
    • (2011) Mach Learn , vol.85 , pp. 41-75
    • Yu, H.-F.1    Huang, F.-L.2    Lin, C.-J.3
  • 40
    • 80052567230 scopus 로고    scopus 로고
    • Developing risk prediction models for type 2 diabetes: A systematic review of methodology, and reporting
    • Collins GS, Mallett S, Omar O, Yu L-M. Developing risk prediction models for type 2 diabetes: A systematic review of methodology, and reporting. BMC Med 2011; 9: 103.
    • (2011) BMC Med , vol.9 , pp. 103
    • Collins, G.S.1    Mallett, S.2    Omar, O.3    Yu, L.-M.4
  • 41
    • 84898972495 scopus 로고    scopus 로고
    • Confidence intervals for the area under the roc curve advances in neural information processing systems
    • Mohri C. Confidence intervals for the area under the ROC curve. In: Advances in Neural Information Processing Systems. Curran Associates, 2005, p. 305.
    • (2005) Curran Associates , pp. 305
    • Mohri, C.1
  • 42
    • 0032580320 scopus 로고    scopus 로고
    • Two-sided confidence intervals for the single proportion: Comparison of seven methods
    • Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Stat Med 1998; 17: 857-872.
    • (1998) Stat Med , vol.17 , pp. 857-872
    • Newcombe, R.G.1
  • 43
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20: 273-297.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 44
    • 84856275943 scopus 로고    scopus 로고
    • Wiley Interdiscip Rev Data Min Knowl Discov
    • Loh WY. Classification, and regression trees. Wiley Interdiscip Rev Data Min Knowl Discov 2011; 1: 14-23.
    • (2011) Classification, and Regression Trees , vol.1 , pp. 14-23
    • Loh, W.Y.1
  • 45
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan JR. Induction of decision trees. Mach Learn 1986; 1: 81-106.
    • (1986) Mach Learn , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 46
    • 84880788228 scopus 로고    scopus 로고
    • Type 2 diabetes risk forecasting from EMR data usingmachine learning
    • Mani S, Chen Y, Elasy T, et al. Type 2 diabetes risk forecasting from EMR data usingmachine learning. AMIA Annu Symp Proc 2012; 2012: 606-615.
    • (2012) AMIA Annu Symp Proc , vol.2012 , pp. 606-615
    • Mani, S.1    Chen, Y.2    Elasy, T.3
  • 47
    • 84901284560 scopus 로고    scopus 로고
    • Survival association rule mining towards type 2 diabetes risk assessment
    • Simon GJ, Schrom J, Castro MR, et al. Survival association rule mining towards type 2 diabetes risk assessment. AMIA Annu Symp Proc 2013; 2013: 1293-1302.
    • (2013) AMIA Annu Symp Proc , vol.2013 , pp. 1293-1302
    • Simon, G.J.1    Schrom, J.2    Castro, M.R.3
  • 48
    • 84872837690 scopus 로고    scopus 로고
    • Comparison of three data mining models for predicting diabetes or prediabetes by risk factors
    • Meng X-H, Huang Y-X, Rao D-P, et al. Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. Kaohsiung J Med Sci 2013; 29: 93-99.
    • (2013) Kaohsiung J Med Sci , vol.29 , pp. 93-99
    • Meng, X.-H.1    Huang, Y.-X.2    Rao, D.-P.3
  • 54
    • 79953787924 scopus 로고    scopus 로고
    • Medical temporal-knowledge discovery via temporal abstraction
    • Moskovitch R, Shahar Y. Medical temporal-knowledge discovery via temporal abstraction. AMIA Annu Symp Proc 2009; 2009: 452-456.
    • (2009) AMIA Annu Symp Proc , vol.2009 , pp. 452-456
    • Moskovitch, R.1    Shahar, Y.2
  • 56
    • 67650080863 scopus 로고    scopus 로고
    • Prevention of diabetes selfmanagement program (PREDIAS): Effects on weight, metabolic risk factors, and behavioral outcomes
    • Kulzer B, Hermanns N, Gorges D, et al. Prevention of diabetes selfmanagement program (PREDIAS): Effects on weight, metabolic risk factors, and behavioral outcomes. Diabetes Care 2009; 32: 1143-1146.
    • (2009) Diabetes Care , vol.32 , pp. 1143-1146
    • Kulzer, B.1    Hermanns, N.2    Gorges, D.3
  • 57
    • 84885111813 scopus 로고    scopus 로고
    • National Center for Health Statistics. Hyattsville MD Available at
    • National Center for Health Statistics. Health, United States, 2012: With special feature on emergency care. Hyattsville, MD, 2013. Available at: www.cdc.gov/nchs/data/hus/hus12.pdf
    • (2013) Health, United States 2012 with Special Feature on Emergency Care
  • 58
    • 0041382939 scopus 로고    scopus 로고
    • Relationship between body mass, and gastro-oesophageal reflux symptoms: The Bristol Helicobacter Project
    • Murray L, Johnston B, Lane A, et al. Relationship between body mass, and gastro-oesophageal reflux symptoms: The Bristol Helicobacter Project. Int J Epidemiol 2003; 32: 645-650.
    • (2003) Int J Epidemiol , vol.32 , pp. 645-650
    • Murray, L.1    Johnston, B.2    Lane, A.3
  • 60
    • 0036499482 scopus 로고    scopus 로고
    • Obstructive sleep apnea is independently associated with insulin resistance
    • Ip MSM, Lam B, Ng MMT, Lam WK, et al. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med 2002; 165: 670-676.
    • (2002) Am J Respir Crit Care Med , vol.165 , pp. 670-676
    • Ip, M.S.M.1    Lam, B.2    Ng, M.M.T.3    Lam, W.K.4
  • 61
    • 4444376099 scopus 로고    scopus 로고
    • Cardiovascular disease risk factors predict the development of type 2 Diabetes: The insulin resistance atherosclerosis study
    • D?Agostino RB, Hamman RF, Karter AJ, et al. Cardiovascular disease risk factors predict the development of type 2 Diabetes: The insulin resistance atherosclerosis study. Diabetes Care 2004; 27: 2234-2240.
    • (2004) Diabetes Care , vol.27 , pp. 2234-2240
    • D'Agostino, R.B.1    Hamman, R.F.2    Karter, A.J.3
  • 62
    • 0036634743 scopus 로고    scopus 로고
    • Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes
    • Hu FB, Stampfer MJ, Haffner SM, et al. Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes. Diabetes Care 2002; 25: 1129-1134.
    • (2002) Diabetes Care , vol.25 , pp. 1129-1134
    • Hu, F.B.1    Stampfer, M.J.2    Haffner, S.M.3
  • 63
    • 0036217052 scopus 로고    scopus 로고
    • Disordered fat storage, and mobilization in the pathogenesis of insulin resistance, and type 2 diabetes
    • Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage, and mobilization in the pathogenesis of insulin resistance, and type 2 diabetes. Endocr Rev 2002; 23: 201-229.
    • (2002) Endocr Rev , vol.23 , pp. 201-229
    • Lewis, G.F.1    Carpentier, A.2    Adeli, K.3    Giacca, A.4
  • 64
    • 23744454350 scopus 로고    scopus 로고
    • Elevated liver function tests in type 2 diabetes
    • Harris EH. Elevated liver function tests in type 2 diabetes. Clin Diabetes 2005; 23: 115-119.
    • (2005) Clin Diabetes , vol.23 , pp. 115-119
    • Harris, E.H.1
  • 65
    • 0033231294 scopus 로고    scopus 로고
    • Association of nonalcoholic fatty liver disease with insulin resistance
    • Marchesini G, Brizi M, Morselli-Labate AM, et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 1999; 107: 450-455.
    • (1999) Am J Med , vol.107 , pp. 450-455
    • Marchesini, G.1    Brizi, M.2    Morselli-Labate, A.M.3
  • 66
    • 84879341125 scopus 로고    scopus 로고
    • The relationship between type 2 diabetes mellitus, and related thyroid diseases
    • Wang C. The relationship between type 2 diabetes mellitus, and related thyroid diseases. J Diabetes Res 2013; 2013: 1-9.
    • (2013) J Diabetes Res , vol.2013 , pp. 1-9
    • Wang, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.