메뉴 건너뛰기




Volumn 48, Issue 7, 2010, Pages 989-998

Integrated diagnostics: A conceptual framework with examples

Author keywords

diagnostic pathology; digitalized histopathology; image analysis algorithms; pattern recognition; proteomic signature; theragnostic

Indexed keywords

EPIDERMAL GROWTH FACTOR RECEPTOR 2;

EID: 77954227318     PISSN: 14346621     EISSN: 14374331     Source Type: Journal    
DOI: 10.1515/CCLM.2010.193     Document Type: Review
Times cited : (31)

References (54)
  • 1
    • 62349137000 scopus 로고    scopus 로고
    • Analysis of clinical flow cytometric immunophenotyping data by clustering on statistical manifolds: Treating flow cytometry data as high-dimensional objects
    • Finn WG, Carter KM, Raich R, Stoolman LM, Hero AO. Analysis of clinical flow cytometric immunophenotyping data by clustering on statistical manifolds: treating flow cytometry data as high-dimensional objects. Cytometry B Clin Cytom 2008; 76:1-7.
    • (2008) Cytometry B Clin Cytom , vol.76 , pp. 1-7
    • Finn, W.G.1    Carter, K.M.2    Raich, R.3    Stoolman, L.M.4    Hero, A.O.5
  • 2
    • 33646508362 scopus 로고    scopus 로고
    • Unsupervised immunophenotypic profiling of chronic lymphocytic leukemia
    • Habib LK, Finn WG. Unsupervised immunophenotypic profiling of chronic lymphocytic leukemia. Cytometry B Clin Cytom 2006;70:124-135
    • (2006) Cytometry B Clin Cytom , vol.70 , pp. 124-135
    • Habib, L.K.1    Finn, W.G.2
  • 3
    • 77954223563 scopus 로고    scopus 로고
    • FlowFP: A bioconductor package for fingerprinting flow cytometric data
    • Rogers WT, Holyst HA. FlowFP: a bioconductor package for fingerprinting flow cytometric data. Adv Bioinformatics 2009; 193947.
    • (2009) Adv Bioinformatics , pp. 193947
    • Rogers, W.T.1    Holyst, H.A.2
  • 4
    • 50249109480 scopus 로고    scopus 로고
    • Interobserver reproducibility of Gleason grading: Evaluation using prostate cancer tissue microarrays
    • Burchardt M, Engers R, Muller M, Burchardt T, Willers R, Epstein JI, et al. Interobserver reproducibility of Gleason grading: evaluation using prostate cancer tissue microarrays. J Cancer Res Clin Oncol 2008;134:1071-1078
    • (2008) J Cancer Res Clin Oncol , vol.134 , pp. 1071-1078
    • Burchardt, M.1    Engers, R.2    Muller, M.3    Burchardt, T.4    Willers, R.5    Epstein, J.I.6
  • 5
    • 0036837288 scopus 로고    scopus 로고
    • Interobserver reproducibility of percent Gleason grade 4/ 5 in total prostatectomy specimens
    • Glaessgen A, Hamberg H, Pihl CG, Sundelin B, Nilsson B, Egevad L. Interobserver reproducibility of percent Gleason grade 4/ 5 in total prostatectomy specimens. J Urol 2002;168:2006-2010
    • (2002) J Urol , vol.168 , pp. 2006-2010
    • Glaessgen, A.1    Hamberg, H.2    Pihl, C.G.3    Sundelin, B.4    Nilsson, B.5    Egevad, L.6
  • 6
    • 0345868314 scopus 로고    scopus 로고
    • Interobserver reproducibility of percent Gleason grade 4/ 5 in prostate biopsies
    • Glaessgen A, Hamberg H, Pihl CG, Sundelin B, Nilsson B, Egevad L. Interobserver reproducibility of percent Gleason grade 4/ 5 in prostate biopsies. J Urol 2004;171:664-667
    • (2004) J Urol , vol.171 , pp. 664-667
    • Glaessgen, A.1    Hamberg, H.2    Pihl, C.G.3    Sundelin, B.4    Nilsson, B.5    Egevad, L.6
  • 7
    • 36549011799 scopus 로고    scopus 로고
    • Interobserver agreement of Gleason score and modified Gleason score in needle biopsy and in surgical specimen of prostate cancer
    • Veloso SG, Lima MF, Salles PG, Berenstein CK, Scalon JD, Bambirra EA. Interobserver agreement of Gleason score and modified Gleason score in needle biopsy and in surgical specimen of prostate cancer. Int Braz J Urol 2007;33:639-646
    • (2007) Int Braz J Urol , vol.33 , pp. 639-646
    • Veloso, S.G.1    Lima, M.F.2    Salles, P.G.3    Berenstein, C.K.4    Scalon, J.D.5    Bambirra, E.A.6
  • 8
    • 0037272440 scopus 로고    scopus 로고
    • A feature set for cytometry on digitized microscopic images
    • Rodenacker K, Bengtsson E. A feature set for cytometry on digitized microscopic images. Anal Cell Pathol 2003;25:1-36.
    • (2003) Anal Cell Pathol , vol.25 , pp. 1-36
    • Rodenacker, K.1    Bengtsson, E.2
  • 9
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks. Nature 1998;393:440-442
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 10
    • 0038700482 scopus 로고    scopus 로고
    • Centers of complex networks
    • Wuchty S, Stadler PF. Centers of complex networks. J Theor Biol 2003;223:45-53.
    • (2003) J Theor Biol , vol.223 , pp. 45-53
    • Wuchty, S.1    Stadler, P.F.2
  • 11
    • 0027286179 scopus 로고
    • Normalization of the minimum spanning tree
    • Marcelpoil R. Normalization of the minimum spanning tree. Anal Cell Pathol 1993;5:177-186
    • (1993) Anal Cell Pathol , vol.5 , pp. 177-186
    • Marcelpoil, R.1
  • 12
    • 0026744308 scopus 로고
    • Three-dimensional image processing for morphometric analysis of epithelium sections
    • Albert R, Schindewolf T, Baumann I, Harms H. Three-dimensional image processing for morphometric analysis of epithelium sections. Cytometry 1992;13:759-765
    • (1992) Cytometry , vol.13 , pp. 759-765
    • Albert, R.1    Schindewolf, T.2    Baumann, I.3    Harms, H.4
  • 15
    • 74649087307 scopus 로고    scopus 로고
    • A novel feature selection approach for biomedical data classification
    • Peng Y, Wu Z, Jiang J. A novel feature selection approach for biomedical data classification. J Biomed Inform 2009;43:15-23.
    • (2009) J Biomed Inform , vol.43 , pp. 15-23
    • Peng, Y.1    Wu, Z.2    Jiang, J.3
  • 16
    • 33750052587 scopus 로고    scopus 로고
    • What should be expected from feature selection in small-sample settings
    • Sima C, Dougherty ER. What should be expected from feature selection in small-sample settings. Bioinformatics 2006;22: 2430-2436
    • (2006) Bioinformatics , vol.22 , pp. 2430-2436
    • Sima, C.1    Dougherty, E.R.2
  • 17
    • 0035184851 scopus 로고    scopus 로고
    • Biomarker identification by feature wrappers
    • Xiong M, Fang X, Zhao J. Biomarker identification by feature wrappers. Genome Res 2001;11:1878-1887
    • (2001) Genome Res , vol.11 , pp. 1878-1887
    • Xiong, M.1    Fang, X.2    Zhao, J.3
  • 18
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • Jain A, Zonker D. Feature selection: evaluation, application, and small sample performance. IEEE Trans Pattern Anal Mach Intell 1997;19:153-158
    • (1997) IEEE Trans Pattern Anal Mach Intell , vol.19 , pp. 153-158
    • Jain, A.1    Zonker, D.2
  • 19
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Freund Y , Schapire RE editors
    • Freund Y, Schapire RE, editors. Experiments with a new boosting algorithm. Proceedings of National Conference on Machine Learning, 1996.
    • (1996) Proceedings of National Conference on Machine Learning
  • 23
    • 70350070225 scopus 로고    scopus 로고
    • Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis
    • Hyvarinen A, Ramkumar P, Parkkonen L, Hari R. Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis. Neuroimage 2010;49:257-271
    • (2010) Neuroimage , vol.49 , pp. 257-271
    • Hyvarinen, A.1    Ramkumar, P.2    Parkkonen, L.3    Hari, R.4
  • 24
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 1999; 10:626-634
    • (1999) IEEE Trans Neural Netw , vol.10 , pp. 626-634
    • Hyvarinen, A.1
  • 25
    • 0041435860 scopus 로고    scopus 로고
    • Nonlinear independent component analysis: Existence and uniqueness results
    • Hyvarinen A, Pajunen P. Nonlinear independent component analysis: existence and uniqueness results. Neural Netw 1999; 12:429-439
    • (1999) Neural Netw , vol.12 , pp. 429-439
    • Hyvarinen, A.1    Pajunen, P.2
  • 26
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • DOI 10.1016/S0893-6080(00)00026-5, PII S0893608000000265
    • Hyvarinen A, Oja E. Independent component analysis: algorithms and applications. Neural Netw 2000;13:411-430 (Pubitemid 30447427)
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 27
    • 77954220197 scopus 로고    scopus 로고
    • Learning an intrinsicvariable preserving manifold for dynamic visual tracking
    • Nov(Epub ahead of print)
    • Qiao H, Zhang P, Zhang B, Zheng S. Learning an intrinsicvariable preserving manifold for dynamic visual tracking. IEEE Trans Syst Man Cybern B Cybern 2009 Nov 13 (Epub ahead of print).
    • (2009) IEEE Trans Syst Man Cybern B Cybern , pp. 13
    • Qiao, H.1    Zhang, P.2    Zhang, B.3    Zheng, S.4
  • 28
    • 77957850951 scopus 로고    scopus 로고
    • Applying manifold learning to plotting approximate contour trees
    • Takahashi S, Fujishiro I, Okada M. Applying manifold learning to plotting approximate contour trees. IEEE Trans Vis Comput Graph 2009;15:1185-1192
    • (2009) IEEE Trans Vis Comput Graph , vol.15 , pp. 1185-1192
    • Takahashi, S.1    Fujishiro, I.2    Okada, M.3
  • 29
    • 60849115541 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear inlaying
    • Hou Y, Zhang P, Xu X, Zhang X, Li W. Nonlinear dimensionality reduction by locally linear inlaying. IEEE Trans Neural Netw 2009;20:300-315
    • (2009) IEEE Trans Neural Netw , vol.20 , pp. 300-315
    • Hou, Y.1    Zhang, P.2    Xu, X.3    Zhang, X.4    Li, W.5
  • 31
    • 41649120173 scopus 로고    scopus 로고
    • Discriminant locally linear embedding with high-order tensor data
    • Li X, Lin S, Yan S, Xu D. Discriminant locally linear embedding with high-order tensor data. IEEE Trans Syst Man Cybern B Cybern 2008;38:342-352
    • (2008) IEEE Trans Syst Man Cybern B Cybern , vol.38 , pp. 342-352
    • Li, X.1    Lin, S.2    Yan, S.3    Xu, D.4
  • 33
    • 31544473466 scopus 로고    scopus 로고
    • Incremental nonlinear dimensionality reduction by manifold learning
    • Law MH, Jain AK. Incremental nonlinear dimensionality reduction by manifold learning. IEEE Trans Pattern Anal Mach Intell 2006;28:377-391
    • (2006) IEEE Trans Pattern Anal Mach Intell , vol.28 , pp. 377-391
    • Law, M.H.1    Jain, A.K.2
  • 34
    • 34047099971 scopus 로고    scopus 로고
    • Distinguishing lesions from posterior acoustic shadowing in breast ultrasound via non-linear dimensionality reduction
    • Madabhushi A, Yang P, Rosen M, Weinstein S. Distinguishing lesions from posterior acoustic shadowing in breast ultrasound via non-linear dimensionality reduction. Conf Proc IEEE Eng Med Biol Soc 2006;1:3070-3073
    • (2006) Conf Proc IEEE Eng Med Biol Soc , vol.1 , pp. 3070-3073
    • Madabhushi, A.1    Yang, P.2    Rosen, M.3    Weinstein, S.4
  • 37
    • 33644847762 scopus 로고    scopus 로고
    • Spectral embedding finds meaningful (relevant) structure in image and microarray data
    • Higgs BW, Weller J, Solka JL. Spectral embedding finds meaningful (relevant) structure in image and microarray data. BMC Bioinformatics 2006;7:74.
    • (2006) BMC Bioinformatics , vol.7 , pp. 74
    • Higgs, B.W.1    Weller, J.2    Solka, J.L.3
  • 38
    • 0027520061 scopus 로고
    • An aggregation of pro and con evidence for medical decision support systems
    • Kuncheva L. An aggregation of pro and con evidence for medical decision support systems. Comput Biol Med 1993;23:417-424
    • (1993) Comput Biol Med , vol.23 , pp. 417-424
    • Kuncheva, L.1
  • 39
    • 0025813386 scopus 로고
    • Evaluation of computerized medical diagnostic decisions via fuzzy sets
    • Kuncheva LI. Evaluation of computerized medical diagnostic decisions via fuzzy sets. Int J Biomed Comput 1991;28:91-100.
    • (1991) Int J Biomed Comput , vol.28 , pp. 91-100
    • Kuncheva, L.I.1
  • 40
    • 0025612246 scopus 로고
    • Fuzzy multi-level classifier for medical applications
    • Kuncheva LI. Fuzzy multi-level classifier for medical applications. Comput Biol Med 1990;20:421-431
    • (1990) Comput Biol Med , vol.20 , pp. 421-431
    • Kuncheva, L.I.1
  • 42
    • 20344371920 scopus 로고    scopus 로고
    • SVM optimization for hyperspectral colon tissue cell classification
    • Rajpoot K, Rajpoot N. SVM optimization for hyperspectral colon tissue cell classification. MICCAI 2004;829-837
    • (2004) MICCAI , pp. 829-837
    • Rajpoot, K.1    Rajpoot, N.2
  • 43
    • 78650397538 scopus 로고    scopus 로고
    • Comparative analysis of discriminant wavelet packet features and raw image features for classification of meningioma subtypes
    • Qureshi H, Rajpoot N, Wilson R, Nattkemper T, Hans V, editors. Aberystwyth (UK)
    • Qureshi H, Rajpoot N, Wilson R, Nattkemper T, Hans V, editors. Comparative analysis of discriminant wavelet packet features and raw image features for classification of meningioma subtypes. Medical Image Understanding and Analysis 2007; Aberystwyth (UK).
    • (2007) Medical Image Understanding and Analysis
  • 49
    • 0032148242 scopus 로고    scopus 로고
    • Microscopic image analysis for quantitative measurement and feature identification of normal and cancerous colonic mucosa
    • Esgiar AN, Naguib RN, Sharif BS, Bennett MK, Murray A. Microscopic image analysis for quantitative measurement and feature identification of normal and cancerous colonic mucosa. IEEE Trans Inf Technol Biomed 1998;2:197-203.
    • (1998) IEEE Trans Inf Technol Biomed , vol.2 , pp. 197-203
    • Esgiar, A.N.1    Naguib, R.N.2    Sharif, B.S.3    Bennett, M.K.4    Murray, A.5
  • 52
    • 68149149744 scopus 로고    scopus 로고
    • Manifold learning with graph-based features for identifying extent of lymphocytic infiltration from high grade breast cancer histology
    • New York, NY 2008
    • Basavanhally A, Agner A, Alexe G, Ganesan S, Bhanot G, Madabhushi A. Manifold learning with graph-based features for identifying extent of lymphocytic infiltration from high grade breast cancer histology. MMBIA workshop in conjunction with MICCAI 2008; New York, NY 2008.
    • (2008) MMBIA Workshop in Conjunction with MICCAI
    • Basavanhally, A.1    Agner, A.2    Alexe, G.3    Ganesan, S.4    Bhanot, G.5    Madabhushi, A.6
  • 53
    • 77954241786 scopus 로고    scopus 로고
    • Expectation maximization driven geodesic active contour: Application to lymphocyte segmentation on digitized breast cancer histopathology
    • Fatakdawala H, Basavanhally A, Xu J, Bhanot G, Ganesan S, Feldman M, et al., editors
    • Fatakdawala H, Basavanhally A, Xu J, Bhanot G, Ganesan S, Feldman M, et al., editors. Expectation maximization driven geodesic active contour: application to lymphocyte segmentation on digitized breast cancer histopathology. Taiwan: IEEE International Conference on Bioinformatics and Bioengineering (IEEE BIBE), 2009.
    • (2009) Taiwan: IEEE International Conference on Bioinformatics and Bioengineering (IEEE BIBE)
  • 54
    • 36348993857 scopus 로고    scopus 로고
    • High expression of lymphocyte-associated genes in node-negative HER2q breast cancers correlates with lower recurrence rates
    • Alexe G, Dalgin GS, Scanfeld D, Tamayo P, Mesirov JP, DeLisi C, et al. High expression of lymphocyte-associated genes in node-negative HER2q breast cancers correlates with lower recurrence rates. Cancer Res 2007;67:10669-10676
    • (2007) Cancer Res , vol.67 , pp. 10669-10676
    • Alexe, G.1    Dalgin, G.S.2    Scanfeld, D.3    Tamayo, P.4    Mesirov, J.P.5    Delisi, C.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.