메뉴 건너뛰기




Volumn 146, Issue 2, 2016, Pages 227-237

Artificial neural network approach in laboratory test reporting: Learning algorithms

Author keywords

Autoverification; Biochemistry; Clinical laboratory; Information systems; Machine learning; Neural networks (computer)

Indexed keywords

ALANINE AMINOTRANSFERASE; ALKALINE PHOSPHATASE; ASPARTATE AMINOTRANSFERASE; CALCIUM; CHLORIDE; CREATININE; GAMMA GLUTAMYLTRANSFERASE; GLUCOSE; MAGNESIUM; POTASSIUM; SODIUM; UREA; URIC ACID;

EID: 85013696200     PISSN: 00029173     EISSN: 19437722     Source Type: Journal    
DOI: 10.1093/ajcp/aqw104     Document Type: Article
Times cited : (52)

References (32)
  • 1
    • 33646271816 scopus 로고    scopus 로고
    • Analysis of laboratory critical value reporting at a large academic medical center
    • Dighe AS, Rao A, Coakley AB, et al. Analysis of laboratory critical value reporting at a large academic medical center. Am J Clin Pathol. 2006;125:758-764. doi:10.1309/R53XVC2U5CH6TNG8.
    • (2006) Am J Clin Pathol , vol.125 , pp. 758-764
    • Dighe, A.S.1    Rao, A.2    Coakley, A.B.3
  • 2
    • 0033756275 scopus 로고    scopus 로고
    • Evaluation of LabRespond, a new automated validation system for clinical laboratory test results
    • Oosterhuis WP, Ulenkate HJ, Goldschmidt HM. Evaluation of LabRespond, a new automated validation system for clinical laboratory test results. Clin Chem. 2000;46:1811-1817.
    • (2000) Clin Chem , vol.46 , pp. 1811-1817
    • Oosterhuis, W.P.1    Ulenkate, H.J.2    Goldschmidt, H.M.3
  • 4
    • 84863049158 scopus 로고    scopus 로고
    • Improving patient safety via automated laboratory-based adverse event grading
    • Niland JC, Stiller T, Neat J, et al. Improving patient safety via automated laboratory-based adverse event grading. J Am Med Inform Assoc. 2012;19:111-115. doi:10.1136/amiajnl-2011-000513.
    • (2012) J Am Med Inform Assoc , vol.19 , pp. 111-115
    • Niland, J.C.1    Stiller, T.2    Neat, J.3
  • 6
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • Khan J, Wei JS, Ringnér M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med. 2001;7:673-679. doi:10.1038/89044.
    • (2001) Nat Med , vol.7 , pp. 673-679
    • Khan, J.1    Wei, J.S.2    Ringnér, M.3
  • 8
    • 68149089064 scopus 로고    scopus 로고
    • Interference testing
    • Dimeski G. Interference testing. Clin Biochem Rev. 2008;29:S43.
    • (2008) Clin Biochem Rev , vol.29 , pp. S43
    • Dimeski, G.1
  • 10
    • 37349097030 scopus 로고    scopus 로고
    • Critical values comparison: A College of American Pathologists Q-Probes survey of 163 clinical laboratories
    • Wagar EA, Friedberg RC, Souers R, et al. Critical values comparison: a College of American Pathologists Q-Probes survey of 163 clinical laboratories. Arch Pathol Lab Med. 2007;131:1769-1775. doi:10.1043/1543-2165(2007)131[1769:CVCACO]2.0.CO;2.
    • (2007) Arch Pathol Lab Med , vol.131 , pp. 1769-1775
    • Wagar, E.A.1    Friedberg, R.C.2    Souers, R.3
  • 11
    • 0033798463 scopus 로고    scopus 로고
    • The haemolytic, icteric and lipemic sample recommendations regarding their recognition and prevention of clinically relevant interferences: Recommendations of the working group on preanalytical variables of the German Society for Clinical Chemistry and the German Society for Laboratory Medicine
    • Guder WG, da Fonseca-Wollheim F, Heil W, et al. The haemolytic, icteric and lipemic sample recommendations regarding their recognition and prevention of clinically relevant interferences: recommendations of the working group on preanalytical variables of the German Society for Clinical Chemistry and the German Society for Laboratory Medicine. Lab Med. 2000;24:357-364. doi:10.1515/labm.2000.24.8.357
    • (2000) Lab Med , vol.24 , pp. 357-364
    • Guder, W.G.1    Da Fonseca-Wollheim, F.2    Heil, W.3
  • 12
    • 11144334591 scopus 로고    scopus 로고
    • Automated processing of serum indices used for interference detection by the laboratory information system
    • Vermeer HJ, Thomassen E, de Jonge N. Automated processing of serum indices used for interference detection by the laboratory information system. Clin Chem. 2005;51:244-247. doi:10.1373/clinchem.2004.036301.
    • (2005) Clin Chem , vol.51 , pp. 244-247
    • Vermeer, H.J.1    Thomassen, E.2    De Jonge, N.3
  • 13
    • 0036827338 scopus 로고    scopus 로고
    • Biological variation data are necessary prerequisites for objective autoverification of clinical laboratory data
    • Fraser CG, Stevenson HP, Kennedy IMG. Biological variation data are necessary prerequisites for objective autoverification of clinical laboratory data. Accredit Qual Assur. 2002;7:455-460. doi:10.1007/s00769-002-0526-3.
    • (2002) Accredit Qual Assur , vol.7 , pp. 455-460
    • Fraser, C.G.1    Stevenson, H.P.2    Kennedy, I.M.G.3
  • 14
    • 0034870540 scopus 로고    scopus 로고
    • Dilution and redistribution effects of rapid 2-litre infusions of 0.9% (w/v) saline and 5% (w/v) dextrose on haematological parameters and serum biochemistry in normal subjects: A double-blind crossover study
    • Lobo DN, Stanga Z, Simpson JA, et al. Dilution and redistribution effects of rapid 2-litre infusions of 0.9% (w/v) saline and 5% (w/v) dextrose on haematological parameters and serum biochemistry in normal subjects: a double-blind crossover study. Clin Sci. 2001;101:173-179.
    • (2001) Clin Sci , vol.101 , pp. 173-179
    • Lobo, D.N.1    Stanga, Z.2    Simpson, J.A.3
  • 15
    • 85014425586 scopus 로고    scopus 로고
    • Autoverification of clinical chemistry results
    • Accessed March 15, 2015
    • Wang S. Autoverification of clinical chemistry results. Clevel Clin. 2011. http://www.aacc.org/resourcecenters/archivedpro grams/expert-access/2011/november/pages/default.aspx. Accessed March 15, 2015.
    • (2011) Clevel Clin
    • Wang, S.1
  • 16
    • 84855535043 scopus 로고    scopus 로고
    • Building and validating an autoverification system in the clinical chemistry laboratory
    • Shih M-C, Chang H-M, Tien N, et al. Building and validating an autoverification system in the clinical chemistry laboratory. Lab Med. 2011;42:668-673. doi:10.1309/LM5AM4IIXC4OIETD.
    • (2011) Lab Med , vol.42 , pp. 668-673
    • Shih, M.-C.1    Chang, H.-M.2    Tien, N.3
  • 17
    • 84872448091 scopus 로고    scopus 로고
    • A strategic informatics approach to autoverification
    • Jones JB. A strategic informatics approach to autoverification. Clin Lab Med. 2013;33:161-181. doi:10.1016/j.cll.2012.11.004.
    • (2013) Clin Lab Med , vol.33 , pp. 161-181
    • Jones, J.B.1
  • 18
    • 84924171454 scopus 로고    scopus 로고
    • Autoverification in a core clinical chemistry laboratory at an academic medical center
    • Krasowski MD, Davis SR, Drees D, et al. Autoverification in a core clinical chemistry laboratory at an academic medical center. J Pathol Inform. 2014;5:13. doi:10.4103/2153-3539.129450.
    • (2014) J Pathol Inform , vol.5 , pp. 13
    • Krasowski, M.D.1    Davis, S.R.2    Drees, D.3
  • 19
    • 0017360990 scopus 로고
    • The measurement of observer agreement for categorical data
    • Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159-174. doi:10.2307/2529310.
    • (1977) Biometrics , vol.33 , pp. 159-174
    • Landis, J.R.1    Koch, G.G.2
  • 20
    • 85014447516 scopus 로고    scopus 로고
    • Accessed January 25, 2015
    • Wikipedia. Backpropagation. 2015. http://en.wikipedia.org/wiki/Backpropagation. Accessed January 25, 2015.
    • (2015) Backpropagation
  • 21
    • 85014491640 scopus 로고    scopus 로고
    • How do i interpret odds ratios in logistic regression?
    • Accessed January 30, 2016
    • Bruin J. How do I interpret odds ratios in logistic regression? UCLA Stat Consult Gr. 2011. http://www.ats.ucla.edu/stat/mult-pkg/faq/general/citingats.htm. Accessed January 30, 2016.
    • (2011) UCLA Stat Consult Gr.
    • Bruin, J.1
  • 22
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial neural network classification models: A methodology review
    • Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform. 2002;35:352-359. doi:10.1016/S1532-0464(03)00034-0.
    • (2002) J Biomed Inform , vol.35 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 23
    • 0036127092 scopus 로고    scopus 로고
    • A review of evidence of health benefit from artificial neural networks in medical intervention
    • Lisboa PJG. A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Netw. 2002;15:11-39. doi:10.1016/S0893-6080(01)00111-3.
    • (2002) Neural Netw , vol.15 , pp. 11-39
    • Lisboa, P.J.G.1
  • 24
    • 17044417189 scopus 로고    scopus 로고
    • Machine Learning. New York, NY: McGraw-Hill
    • Mitchell TM. Artificial neural networks. In: Machine Learning. New York, NY: McGraw-Hill; 1997:81-126. doi:10.1145/242224.242229.
    • (1997) Artificial Neural Networks , pp. 81-126
    • Mitchell, T.M.1
  • 25
    • 0026529544 scopus 로고
    • VALAB: Expert system for validation of biochemical data
    • Valdiguie PM, Rogari E, Philippe H. VALAB: expert system for validation of biochemical data. Clin Chem. 1992;38:83-87.
    • (1992) Clin Chem , vol.38 , pp. 83-87
    • Valdiguie, P.M.1    Rogari, E.2    Philippe, H.3
  • 26
    • 0029961715 scopus 로고    scopus 로고
    • The performance of the knowledge-based system VALAB revisited: An evaluation after five years
    • Valdiguié PM, Rogari E, Corberand JX, et al. The performance of the knowledge-based system VALAB revisited: an evaluation after five years. Eur J Clin Chem Clin Biochem. 1996;34:371-376.
    • (1996) Eur J Clin Chem Clin Biochem , vol.34 , pp. 371-376
    • Valdiguié, P.M.1    Rogari, E.2    Corberand, J.X.3
  • 27
    • 33745069552 scopus 로고    scopus 로고
    • The DNSevTM expert system in the auto-verification of tumour markers and hormones results
    • Dorizzi RM, Caruso B, Meneghelli S, et al. The DNSevTM expert system in the auto-verification of tumour markers and hormones results. Accredit Qual Assur. 2006;11:303-307. doi:10.1007/s00769-006-0160-6.
    • (2006) Accredit Qual Assur , vol.11 , pp. 303-307
    • Dorizzi, R.M.1    Caruso, B.2    Meneghelli, S.3
  • 28
    • 28044466400 scopus 로고    scopus 로고
    • Process improvement and operational efficiency through test result autoverification
    • Torke N, Boral L, Nguyen T, et al. Process improvement and operational efficiency through test result autoverification. Clin Chem. 2005;51:2406-2408. doi:10.1373/clinchem.2005.054395.
    • (2005) Clin Chem , vol.51 , pp. 2406-2408
    • Torke, N.1    Boral, L.2    Nguyen, T.3
  • 29
    • 27444435508 scopus 로고    scopus 로고
    • Reduce emergency department turnaround time outliers can reduce emergency department patient length of stay
    • Holland LL, Smith LL, Blick KE. Reduce emergency department turnaround time outliers can reduce emergency department patient length of stay. Am J Clin Pathol. 2005;124:672-674. doi:10.1309/E9QPVQ6G2FBVMJ3B.
    • (2005) Am J Clin Pathol , vol.124 , pp. 672-674
    • Holland, L.L.1    Smith, L.L.2    Blick, K.E.3
  • 31
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533-536. doi:10.1038/323533a0.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.