메뉴 건너뛰기




Volumn 28, Issue 2, 2017, Pages

An integrated approach to planetary gearbox fault diagnosis using deep belief networks

Author keywords

deep belief networks; dimensionality reduction; intelligent fault diagnosis; planetary gearbox; vibration signal

Indexed keywords

EXTRACTION; FAILURE ANALYSIS; FEATURE EXTRACTION; FREQUENCY MODULATION; GEARS; MODULATION; OPTIMIZATION; PARTICLE SWARM OPTIMIZATION (PSO); SIGNAL PROCESSING;

EID: 85010986655     PISSN: 09570233     EISSN: 13616501     Source Type: Journal    
DOI: 10.1088/1361-6501/aa50e7     Document Type: Article
Times cited : (49)

References (41)
  • 1
    • 58949090476 scopus 로고    scopus 로고
    • Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine
    • 1352-65
    • Barszcz T and Randall R B 2009 Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine Mech. Syst. Signal Process. 23 1352-65
    • (2009) Mech. Syst. Signal Process. , vol.23 , pp. 1352-1365
    • Barszcz, T.1    Randall, R.B.2
  • 2
    • 33746990693 scopus 로고    scopus 로고
    • Detection of a fatigue crack in a UH-60A planet gear carrier using vibration analysis
    • 2095-111
    • Blunt D M and Keller J A 2006 Detection of a fatigue crack in a UH-60A planet gear carrier using vibration analysis Mech. Syst. Signal Process. 20 2095-111
    • (2006) Mech. Syst. Signal Process. , vol.20 , pp. 2095-2111
    • Blunt, D.M.1    Keller, J.A.2
  • 3
    • 84890044969 scopus 로고    scopus 로고
    • Condition monitoring and fault diagnosis of planetary gearboxes: A review
    • 292-305
    • Lei Y G, Lin J, Zuo M J and He Z J 2014 Condition monitoring and fault diagnosis of planetary gearboxes: a review Measurement 48 292-305
    • (2014) Measurement , vol.48 , pp. 292-305
    • Lei, Y.G.1    Lin, J.2    Zuo, M.J.3    He, Z.J.4
  • 4
    • 53849123982 scopus 로고    scopus 로고
    • Vibration condition monitoring of planetary gearbox under varying external load
    • 246-57
    • Bartelmus W and Zimroz R 2009 Vibration condition monitoring of planetary gearbox under varying external load Mech. Syst. Signal Process. 23 246-57
    • (2009) Mech. Syst. Signal Process. , vol.23 , pp. 246-257
    • Bartelmus, W.1    Zimroz, R.2
  • 5
    • 84876936237 scopus 로고    scopus 로고
    • Planetary gearbox fault diagnosis using an adaptive stochastic resonance method
    • 113-24
    • Lei Y, Han D, Lin J and He Z 2013 Planetary gearbox fault diagnosis using an adaptive stochastic resonance method Mech. Syst. Signal Process. 38 113-24
    • (2013) Mech. Syst. Signal Process. , vol.38 , pp. 113-124
    • Lei, Y.1    Han, D.2    Lin, J.3    He, Z.4
  • 6
    • 84921313174 scopus 로고    scopus 로고
    • Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions
    • 360-75
    • Feng Z, Chen X and Liang M 2015 Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions Mech. Syst. Signal Process. 52 360-75
    • (2015) Mech. Syst. Signal Process. , vol.52 , pp. 360-375
    • Feng, Z.1    Chen, X.2    Liang, M.3
  • 7
    • 84890022208 scopus 로고    scopus 로고
    • Vibration signal models for fault diagnosis of planetary gearboxes
    • 4919-39
    • Feng Z and Zuo M J 2012 Vibration signal models for fault diagnosis of planetary gearboxes J. Sound Vib. 331 4919-39
    • (2012) J. Sound Vib. , vol.331 , pp. 4919-4939
    • Feng, Z.1    Zuo, M.J.2
  • 8
    • 84956685719 scopus 로고    scopus 로고
    • Phenomenological models of vibration signals for condition monitoring and fault diagnosis of epicyclic gearboxes
    • 266-81
    • Lei Y, Liu Z, Lin J and Lu F 2016 Phenomenological models of vibration signals for condition monitoring and fault diagnosis of epicyclic gearboxes J. Sound Vib. 369 266-81
    • (2016) J. Sound Vib. , vol.369 , pp. 266-281
    • Lei, Y.1    Liu, Z.2    Lin, J.3    Lu, F.4
  • 9
    • 0027576027 scopus 로고
    • On amplitude and frequency demodulation using energy operators
    • 1532-50
    • Maragos P, Kaiser J F and Quatieri T F 1993 On amplitude and frequency demodulation using energy operators IEEE Trans. Signal Process. 41 1532-50
    • (1993) IEEE Trans. Signal Process. , vol.41 , pp. 1532-1550
    • Maragos, P.1    Kaiser, J.F.2    Quatieri, T.F.3
  • 10
    • 77953797175 scopus 로고    scopus 로고
    • Teager energy operator for multi-modulation extraction and its application for gearbox fault detection
    • Bozchalooi I S and Liang M 2010 Teager energy operator for multi-modulation extraction and its application for gearbox fault detection Smart Mater. Struct. 19 075008
    • (2010) Smart Mater. Struct. , vol.19 , Issue.7
    • Bozchalooi, I.S.1    Liang, M.2
  • 11
    • 84860824316 scopus 로고    scopus 로고
    • Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation
    • 112-26
    • Feng Z, Liang M, Zhang Y and Hou S 2012 Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation Renew. Energy 47 112-26
    • (2012) Renew. Energy , vol.47 , pp. 112-126
    • Feng, Z.1    Liang, M.2    Zhang, Y.3    Hou, S.4
  • 12
    • 84881315548 scopus 로고    scopus 로고
    • Joint amplitude and frequency demodulation analysis based on local mean decomposition for fault diagnosis of planetary gearboxes
    • 56-75
    • Feng Z P, Zuo M J, Qu J, Tian T and Liu Z L 2013 Joint amplitude and frequency demodulation analysis based on local mean decomposition for fault diagnosis of planetary gearboxes Mech. Syst. Signal Process. 40 56-75
    • (2013) Mech. Syst. Signal Process. , vol.40 , pp. 56-75
    • Feng, Z.P.1    Zuo, M.J.2    Qu, J.3    Tian, T.4    Liu, Z.L.5
  • 13
    • 84870404381 scopus 로고    scopus 로고
    • A review on empirical mode decomposition in fault diagnosis of rotating machinery
    • 108-26
    • Lei Y, Lin J, He Z and Zuo M J 2013 A review on empirical mode decomposition in fault diagnosis of rotating machinery Mech. Syst. Signal Process. 35 108-26
    • (2013) Mech. Syst. Signal Process. , vol.35 , pp. 108-126
    • Lei, Y.1    Lin, J.2    He, Z.3    Zuo, M.J.4
  • 14
    • 84888641833 scopus 로고    scopus 로고
    • Fault level diagnosis for planetary gearboxes using hybrid kernel feature selection and kernel Fisher discriminant analysis
    • 1217-30
    • Liu Z L, Qu J, Zuo M J and Xu H B 2013 Fault level diagnosis for planetary gearboxes using hybrid kernel feature selection and kernel Fisher discriminant analysis Int. J. Adv. Manuf. Technol. 67 1217-30
    • (2013) Int. J. Adv. Manuf. Technol. , vol.67 , pp. 1217-1230
    • Liu, Z.L.1    Qu, J.2    Zuo, M.J.3    Xu, H.B.4
  • 15
    • 17844386578 scopus 로고    scopus 로고
    • A review of vibration-based techniques for helicopter transmission diagnostics
    • 475-508
    • Samuel P D and Pines D J 2005 A review of vibration-based techniques for helicopter transmission diagnostics J. Sound Vib. 282 475-508
    • (2005) J. Sound Vib. , vol.282 , pp. 475-508
    • Samuel, P.D.1    Pines, D.J.2
  • 16
    • 84859884263 scopus 로고    scopus 로고
    • Fault detection of planetary gearboxes using new diagnostic parameters
    • Lei Y G, Kong D T, Lin J and Zuo M J 2012 Fault detection of planetary gearboxes using new diagnostic parameters Meas. Sci. Technol. 23 055605
    • (2012) Meas. Sci. Technol. , vol.23 , Issue.5
    • Lei, Y.G.1    Kong, D.T.2    Lin, J.3    Zuo, M.J.4
  • 17
    • 36048939640 scopus 로고    scopus 로고
    • New clustering algorithm-based fault diagnosis using compensation distance evaluation technique
    • 419-35
    • Lei Y, He Z, Zi Y and Chen X 2008 New clustering algorithm-based fault diagnosis using compensation distance evaluation technique Mech. Syst. Signal Process. 22 419-35
    • (2008) Mech. Syst. Signal Process. , vol.22 , pp. 419-435
    • Lei, Y.1    He, Z.2    Zi, Y.3    Chen, X.4
  • 18
    • 79953673543 scopus 로고    scopus 로고
    • A new feature extraction and selection scheme for hybrid fault diagnosis of gearbox
    • 10000-9
    • Li B, Zhang P L, Tian H, Mi S S, Liu D S and Ren G Q 2011 A new feature extraction and selection scheme for hybrid fault diagnosis of gearbox Expert Syst. Appl. 38 10000-9
    • (2011) Expert Syst. Appl. , vol.38 , pp. 10000-10009
    • Li, B.1    Zhang, P.L.2    Tian, H.3    Mi, S.S.4    Liu, D.S.5    Ren, G.Q.6
  • 19
    • 36148950145 scopus 로고    scopus 로고
    • A simulated-annealing-based approach for simultaneous parameter optimization and feature selection of back-propagation networks
    • 1491-9
    • Lin S-W, Tseng T-Y, Chou S-Y and Chen S-C 2008 A simulated-annealing-based approach for simultaneous parameter optimization and feature selection of back-propagation networks Expert Syst. Appl. 34 1491-9
    • (2008) Expert Syst. Appl. , vol.34 , pp. 1491-1499
    • Lin, S.-W.1    Tseng, T.-Y.2    Chou, S.-Y.3    Chen, S.-C.4
  • 20
    • 79953710532 scopus 로고    scopus 로고
    • Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis
    • 10205-9
    • Hajnayeb A, Ghasemloonia A, Khadem S and Moradi M 2011 Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis Expert Syst. Appl. 38 10205-9
    • (2011) Expert Syst. Appl. , vol.38 , pp. 10205-10209
    • Hajnayeb, A.1    Ghasemloonia, A.2    Khadem, S.3    Moradi, M.4
  • 21
    • 33750591809 scopus 로고    scopus 로고
    • Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing
    • 930-42
    • Sugumaran V, Muralidharan V and Ramachandran K 2007 Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing Mech. Syst. Signal Process. 21 930-42
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 930-942
    • Sugumaran, V.1    Muralidharan, V.2    Ramachandran, K.3
  • 22
    • 84884138735 scopus 로고    scopus 로고
    • Comparison of FDA-based and PCA-based features in fault diagnosis of automobile gearboxes
    • 150-9
    • Gharavian M H, Ganj F A, Ohadi A R and Bafroui H H 2013 Comparison of FDA-based and PCA-based features in fault diagnosis of automobile gearboxes Neurocomputing 121 150-9
    • (2013) Neurocomputing , vol.121 , pp. 150-159
    • Gharavian, M.H.1    Ganj, F.A.2    Ohadi, A.R.3    Bafroui, H.H.4
  • 24
    • 85010970694 scopus 로고    scopus 로고
    • Exponential discriminant analysis for fault diagnosis
    • 77-85
    • Adil M, Abid M, Khan A, Mustafa G and Ahmed N 2015 Exponential discriminant analysis for fault diagnosis Neurocomputing 154 77-85
    • (2015) Neurocomputing , vol.154 , pp. 77-85
    • Adil, M.1    Abid, M.2    Khan, A.3    Mustafa, G.4    Ahmed, N.5
  • 25
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • 1226-38
    • Peng H, Long F and Ding C 2005 Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy IEEE Trans. Pattern Anal. Mach. Intell. 27 1226-38
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 27
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • 504-7
    • Hinton G E and Salakhutdinov R R 2006 Reducing the dimensionality of data with neural networks Science 313 504-7
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 28
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • 1527-54
    • Hinton G E, Osindero S and Teh Y-W 2006 A fast learning algorithm for deep belief nets Neural Comput. 18 1527-54
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 30
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • 124-35
    • Tamilselvan P and Wang P 2013 Failure diagnosis using deep belief learning based health state classification Reliab. Eng. Syst. Safety 115 124-35
    • (2013) Reliab. Eng. Syst. Safety , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 31
    • 84893464266 scopus 로고    scopus 로고
    • An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
    • 4113-22
    • Tran V T, Faisal A and Ball A 2014 An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks Expert Syst. Appl. 41 4113-22
    • (2014) Expert Syst. Appl. , vol.41 , pp. 4113-4122
    • Tran, V.T.1    Faisal, A.2    Ball, A.3
  • 32
    • 84946064662 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis using an optimization deep belief network
    • Shao H, Jiang H, Zhang X and Niu M 2015 Rolling bearing fault diagnosis using an optimization deep belief network Meas. Sci. Technol. 26 115002
    • (2015) Meas. Sci. Technol. , vol.26 , Issue.11
    • Shao, H.1    Jiang, H.2    Zhang, X.3    Niu, M.4
  • 33
    • 84955504842 scopus 로고    scopus 로고
    • Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
    • 92-104
    • Gan M and Wang C 2016 Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings Mech. Syst. Signal Process. 72 92-104
    • (2016) Mech. Syst. Signal Process. , vol.72 , pp. 92-104
    • Gan, M.1    Wang, C.2
  • 34
    • 84944323318 scopus 로고    scopus 로고
    • Multi-layer neural network with deep belief network for gearbox fault diagnosis
    • 2379-92
    • Chen Z, Li C and Sánchez R V 2015 Multi-layer neural network with deep belief network for gearbox fault diagnosis J. Vibroeng. 17 2379-92
    • (2015) J. Vibroeng. , vol.17 , pp. 2379-2392
    • Chen, Z.1    Li, C.2    Sánchez, R.V.3
  • 35
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • 303-15
    • Jia F, Lei Y, Lin J, Zhou X and Lu N 2016 Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data Mech. Syst. Signal Process. 72 303-15
    • (2016) Mech. Syst. Signal Process. , vol.72 , pp. 303-315
    • Jia, F.1    Lei, Y.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 36
    • 77950596371 scopus 로고    scopus 로고
    • PSO-based back-propagation artificial neural network for product and mold cost estimation of plastic injection molding
    • 625-37
    • Che Z 2010 PSO-based back-propagation artificial neural network for product and mold cost estimation of plastic injection molding Comput. Ind. Eng. 58 625-37
    • (2010) Comput. Ind. Eng. , vol.58 , pp. 625-637
    • Che, Z.1
  • 37
    • 0344291226 scopus 로고    scopus 로고
    • Recent approaches to global optimization problems through particle swarm optimization
    • 235-306
    • Parsopoulos K E and Vrahatis M N 2002 Recent approaches to global optimization problems through particle swarm optimization Nat. Comput. 1 235-306
    • (2002) Nat. Comput. , vol.1 , pp. 235-306
    • Parsopoulos, K.E.1    Vrahatis, M.N.2
  • 38
    • 45249116751 scopus 로고    scopus 로고
    • Rotary machine health diagnosis based on empirical mode decomposition
    • Yan R and Gao R X 2008 Rotary machine health diagnosis based on empirical mode decomposition J. Vib. Acoust. 130 21007
    • (2008) J. Vib. Acoust. , vol.130 , pp. 21007
    • Yan, R.1    Gao, R.X.2
  • 39
    • 82255174981 scopus 로고    scopus 로고
    • Early fault diagnosis of rotating machinery based on wavelet packets - Empirical mode decomposition feature extraction and neural network
    • 696-711
    • Bin G, Gao J, Li X and Dhillon B 2012 Early fault diagnosis of rotating machinery based on wavelet packets - empirical mode decomposition feature extraction and neural network Mech. Syst. Signal Process. 27 696-711
    • (2012) Mech. Syst. Signal Process. , vol.27 , pp. 696-711
    • Bin, G.1    Gao, J.2    Li, X.3    Dhillon, B.4
  • 40
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • 599-619
    • Hinton G E 2010 A practical guide to training restricted Boltzmann machines Momentum 9 599-619
    • (2010) Momentum , vol.9 , pp. 599-619
    • Hinton, G.E.1
  • 41
    • 33745941948 scopus 로고    scopus 로고
    • Maximum likelihood estimation of intrinsic dimension
    • 777-84
    • Levina E and Bickel P J ed 2004 Maximum likelihood estimation of intrinsic dimension Adv. Neural Inf. Process. Syst. 17 777-84
    • (2004) Adv. Neural Inf. Process. Syst. , vol.17 , pp. 777-784
    • Levina, E.1    Bickel, P.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.