-
2
-
-
65749319923
-
Transformations des signaux aléatoires a travers les systemes non linéaires sans mémoire
-
G. Bonnet. Transformations des signaux aléatoires a travers les systemes non linéaires sans mémoire. Annals of Telecommunications, 19(9):203–220, 1964.
-
(1964)
Annals of Telecommunications
, vol.19
, Issue.9
, pp. 203-220
-
-
Bonnet, G.1
-
3
-
-
0002205556
-
Rao-Blackwellisation of sampling schemes
-
G. Casella and C. P. Robert. Rao-Blackwellisation of sampling schemes. Biometrika, 83(1):81–94, 1996.
-
(1996)
Biometrika
, vol.83
, Issue.1
, pp. 81-94
-
-
Casella, G.1
Robert, C.P.2
-
5
-
-
80052250414
-
Adaptive subgra-dient methods for online learning and stochastic optimization
-
jul
-
J. Duchi, E. Hazan, and Y. Singer. Adaptive subgra-dient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, jul 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
6
-
-
84965120997
-
Fast second order stochastic backpropagation for variational inference
-
K. Fan, Z. Wang, J. Beck, J. Kwok, and K. A. Heller. Fast second order stochastic backpropagation for variational inference. In Advances in Neural Information Processing Systems, 2015.
-
(2015)
Advances in Neural Information Processing Systems
-
-
Fan, K.1
Wang, Z.2
Beck, J.3
Kwok, J.4
Heller, K.A.5
-
7
-
-
84976859194
-
Likelihood ratio gradient estimation for stochastic systems
-
oct
-
P. W. Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM, 33(10):75–84, oct 1990.
-
(1990)
Communications of the ACM
, vol.33
, Issue.10
, pp. 75-84
-
-
Glynn, P.W.1
-
8
-
-
0027803368
-
Keeping the neural networks simple by minimizing the description length of the weights
-
New York, NY, USA, ACM
-
G. E. Hinton and D. van Camp. Keeping the neural networks simple by minimizing the description length of the weights. In Proceedings of the Sixth Annual Conference on Computational Learning Theory, pages 5–13, New York, NY, USA, 1993. ACM.
-
(1993)
Proceedings of the Sixth Annual Conference on Computational Learning Theory
, pp. 5-13
-
-
Hinton, G.E.1
van Camp, D.2
-
9
-
-
84878919168
-
Stochastic variational inference
-
May
-
M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Journal of Machine Learning Research, 14:1303–1347, May 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
11
-
-
0033225865
-
An introduction to variational methods for graphical models
-
Nov
-
M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2): 183–233, Nov. 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
15
-
-
84997780122
-
-
A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. M. Blei. Automatic differentiation variational inference. arXiv:1603.00788, 2016.
-
(2016)
Automatic Differentiation Variational Inference
-
-
Kucukelbir, A.1
Tran, D.2
Ranganath, R.3
Gelman, A.4
Blei, D.M.5
-
22
-
-
2442627902
-
Non-centered parameterisations for hierarchical models and data augmentation
-
Oxford University Press, USA
-
O. Papaspiliopoulos, G. O. Roberts, and M. Sköld. Non-centered parameterisations for hierarchical models and data augmentation. In Bayesian Statistics 7: Proceedings of the Seventh Valencia International Meeting, page 307. Oxford University Press, USA, 2003.
-
(2003)
Bayesian Statistics 7: Proceedings of the Seventh Valencia International Meeting
, pp. 307
-
-
Papaspiliopoulos, O.1
Roberts, G.O.2
Sköld, M.3
-
23
-
-
84937352287
-
A useful theorem for nonlinear devices having Gaussian inputs
-
R. Price. A useful theorem for nonlinear devices having Gaussian inputs. IRE Transactions on Information Theory, 4(2):69–72, 1958.
-
(1958)
IRE Transactions on Information Theory
, vol.4
, Issue.2
, pp. 69-72
-
-
Price, R.1
-
30
-
-
84891700107
-
Fixed-form variational posterior approximation through stochastic linear regression
-
T. Salimans and D. A. Knowles. Fixed-form variational posterior approximation through stochastic linear regression. Bayesian Analysis, 8(4):837–882, 2013.
-
(2013)
Bayesian Analysis
, vol.8
, Issue.4
, pp. 837-882
-
-
Salimans, T.1
Knowles, D.A.2
-
33
-
-
0010392349
-
Gamma-distributed products of independent random variables
-
A. Stuart. Gamma-distributed products of independent random variables. Biometrika, 49:64–65, 1962.
-
(1962)
Biometrika
, vol.49
, pp. 64-65
-
-
Stuart, A.1
-
34
-
-
84893343292
-
Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
-
T. Tieleman and G. Hinton. Lecture 6.5-RMSPROP: Divide the gradient by a running average of its recent magnitude. Coursera: Neural Networks for Machine Learning, 4, 2012.
-
(2012)
Coursera: Neural Networks for Machine Learning
, vol.4
-
-
Tieleman, T.1
Hinton, G.2
-
39
-
-
0000337576
-
Simple statistical gradient-following algorithms for connectionist reinforcement learning
-
R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3–4):229–256, 1992.
-
(1992)
Machine Learning
, vol.8
, Issue.3-4
, pp. 229-256
-
-
Williams, R.J.1
|