메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Reparameterization gradients through acceptance-rejection sampling algorithms

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; INFERENCE ENGINES; LEARNING ALGORITHMS; OPTIMIZATION; RANDOM VARIABLES;

EID: 85083936643     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (135)

References (39)
  • 2
    • 65749319923 scopus 로고
    • Transformations des signaux aléatoires a travers les systemes non linéaires sans mémoire
    • G. Bonnet. Transformations des signaux aléatoires a travers les systemes non linéaires sans mémoire. Annals of Telecommunications, 19(9):203–220, 1964.
    • (1964) Annals of Telecommunications , vol.19 , Issue.9 , pp. 203-220
    • Bonnet, G.1
  • 3
    • 0002205556 scopus 로고    scopus 로고
    • Rao-Blackwellisation of sampling schemes
    • G. Casella and C. P. Robert. Rao-Blackwellisation of sampling schemes. Biometrika, 83(1):81–94, 1996.
    • (1996) Biometrika , vol.83 , Issue.1 , pp. 81-94
    • Casella, G.1    Robert, C.P.2
  • 5
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgra-dient methods for online learning and stochastic optimization
    • jul
    • J. Duchi, E. Hazan, and Y. Singer. Adaptive subgra-dient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, jul 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 7
    • 84976859194 scopus 로고
    • Likelihood ratio gradient estimation for stochastic systems
    • oct
    • P. W. Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM, 33(10):75–84, oct 1990.
    • (1990) Communications of the ACM , vol.33 , Issue.10 , pp. 75-84
    • Glynn, P.W.1
  • 11
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Nov
    • M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2): 183–233, Nov. 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 18
    • 85088232510 scopus 로고    scopus 로고
    • The concrete distribution: A continuous relaxation of discrete random variables
    • accepted for publication
    • C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation of discrete random variables. In International Conference on Learning Representations, 2017. (accepted for publication).
    • (2017) International Conference on Learning Representations
    • Maddison, C.J.1    Mnih, A.2    Teh, Y.W.3
  • 23
    • 84937352287 scopus 로고
    • A useful theorem for nonlinear devices having Gaussian inputs
    • R. Price. A useful theorem for nonlinear devices having Gaussian inputs. IRE Transactions on Information Theory, 4(2):69–72, 1958.
    • (1958) IRE Transactions on Information Theory , vol.4 , Issue.2 , pp. 69-72
    • Price, R.1
  • 30
    • 84891700107 scopus 로고    scopus 로고
    • Fixed-form variational posterior approximation through stochastic linear regression
    • T. Salimans and D. A. Knowles. Fixed-form variational posterior approximation through stochastic linear regression. Bayesian Analysis, 8(4):837–882, 2013.
    • (2013) Bayesian Analysis , vol.8 , Issue.4 , pp. 837-882
    • Salimans, T.1    Knowles, D.A.2
  • 33
    • 0010392349 scopus 로고
    • Gamma-distributed products of independent random variables
    • A. Stuart. Gamma-distributed products of independent random variables. Biometrika, 49:64–65, 1962.
    • (1962) Biometrika , vol.49 , pp. 64-65
    • Stuart, A.1
  • 34
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
    • T. Tieleman and G. Hinton. Lecture 6.5-RMSPROP: Divide the gradient by a running average of its recent magnitude. Coursera: Neural Networks for Machine Learning, 4, 2012.
    • (2012) Coursera: Neural Networks for Machine Learning , vol.4
    • Tieleman, T.1    Hinton, G.2
  • 39
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3–4):229–256, 1992.
    • (1992) Machine Learning , vol.8 , Issue.3-4 , pp. 229-256
    • Williams, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.