메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 2538-2547

A multi-view stereo benchmark with high-resolution images and multi-camera videos

Author keywords

[No Author keywords available]

Indexed keywords

CAMERAS; COMPUTER VISION; PATTERN RECOGNITION;

EID: 85030778340     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.272     Document Type: Conference Paper
Times cited : (723)

References (47)
  • 1
    • 84887338408 scopus 로고    scopus 로고
    • A naturalistic open source movie for optical flow evaluation
    • D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow evaluation. In ECCV, 2012.
    • (2012) ECCV
    • Butler, D.J.1    Wulff, J.2    Stanley, G.B.3    Black, M.J.4
  • 2
    • 44049122968 scopus 로고
    • Object modelling by registration of multiple range images
    • Y. Chen and G. Medioni. Object modelling by registration of multiple range images. Image and vision computing, 10(3): 145-155, 1992.
    • (1992) Image and Vision Computing , vol.10 , Issue.3 , pp. 145-155
    • Chen, Y.1    Medioni, G.2
  • 4
    • 77953810904 scopus 로고    scopus 로고
    • Accurate, dense, and robust multiview stereopsis
    • Y. Furukawa and J. Ponce. Accurate, dense, and robust multiview stereopsis. PAMI, 32(8): 1362-1376, 2010.
    • (2010) PAMI , vol.32 , Issue.8 , pp. 1362-1376
    • Furukawa, Y.1    Ponce, J.2
  • 5
    • 84973863242 scopus 로고    scopus 로고
    • Massively parallel multiview stereopsis by surface normal diffusion
    • S. Galliani, K. Lasinger, and K. Schindler. Massively parallel multiview stereopsis by surface normal diffusion. In ICCV, 2015.
    • (2015) ICCV
    • Galliani, S.1    Lasinger, K.2    Schindler, K.3
  • 6
    • 84866704163 scopus 로고    scopus 로고
    • Are we ready for autonomous driving? The KITTI vision benchmark suite
    • A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? The KITTI vision benchmark suite. In CVPR, 2012.
    • (2012) CVPR
    • Geiger, A.1    Lenz, P.2    Urtasun, R.3
  • 7
    • 80155123323 scopus 로고    scopus 로고
    • Efficient large-scale stereo matching
    • A. Geiger, M. Roser, and R. Urtasun. Efficient large-scale stereo matching. In ACCV, 2010.
    • (2010) ACCV
    • Geiger, A.1    Roser, M.2    Urtasun, R.3
  • 8
    • 79960792622 scopus 로고    scopus 로고
    • StereoScan: Dense 3D reconstruction in real-time
    • A. Geiger, J. Ziegler, and C. Stiller. StereoScan: Dense 3D reconstruction in real-time. In IV, 2011.
    • (2011) IV
    • Geiger, A.1    Ziegler, J.2    Stiller, C.3
  • 10
    • 84958183887 scopus 로고    scopus 로고
    • Obstacle detection for self-driving cars using only monocular cameras and wheel odometry
    • C. Häne, T. Sattler, and M. Pollefeys. Obstacle detection for self-driving cars using only monocular cameras and wheel odometry. In IROS, 2015.
    • (2015) IROS
    • Häne, C.1    Sattler, T.2    Pollefeys, M.3
  • 12
    • 34948822300 scopus 로고    scopus 로고
    • Evaluation of cost functions for stereo matching
    • H. Hirschmuller and D. Scharstein. Evaluation of Cost Functions for Stereo Matching. In CVPR, 2007.
    • (2007) CVPR
    • Hirschmuller, H.1    Scharstein, D.2
  • 13
    • 37549015676 scopus 로고    scopus 로고
    • Stereo processing by semiglobal matching and mutual information
    • H. Hirschmüller. Stereo processing by semiglobal matching and mutual information. PAMI, 30(2): 328-341, 2008.
    • (2008) PAMI , vol.30 , Issue.2 , pp. 328-341
    • Hirschmüller, H.1
  • 14
    • 84911480308 scopus 로고    scopus 로고
    • Real-time and low latency embedded computer vision hardware based on a combination of FPGA and mobile CPU
    • D. Honegger, H. Oleynikova, and M. Pollefeys. Real-time and low latency embedded computer vision hardware based on a combination of FPGA and mobile CPU. In IROS, 2014.
    • (2014) IROS
    • Honegger, D.1    Oleynikova, H.2    Pollefeys, M.3
  • 15
    • 84943786323 scopus 로고    scopus 로고
    • Single-view reconstruction via joint analysis of image and shape collections
    • Q. Huang, H. Wang, and V. Koltun. Single-view reconstruction via joint analysis of image and shape collections. In SIGGRAPH, 2015.
    • (2015) SIGGRAPH
    • Huang, Q.1    Wang, H.2    Koltun, V.3
  • 16
    • 80052906099 scopus 로고    scopus 로고
    • Multi-view reconstruction preserving weakly-supported surfaces
    • M. Jancosek and T. Pajdla. Multi-view reconstruction preserving weakly-supported surfaces. In CVPR, 2011.
    • (2011) CVPR
    • Jancosek, M.1    Pajdla, T.2
  • 18
    • 84879498472 scopus 로고    scopus 로고
    • Screened poisson surface reconstruction
    • M. M. Kazhdan and H. Hoppe. Screened poisson surface reconstruction. SIGGRAPH, 32(3): 29, 2013.
    • (2013) SIGGRAPH , vol.32 , Issue.3 , pp. 29
    • Kazhdan, M.M.1    Hoppe, H.2
  • 19
    • 85030787895 scopus 로고    scopus 로고
    • Tanks and temples: Benchmarking large-scale scene reconstruction
    • A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun. Tanks and temples: Benchmarking large-scale scene reconstruction. SIGGRAPH, 36(4), 2017.
    • (2017) SIGGRAPH , vol.36 , Issue.4
    • Knapitsch, A.1    Park, J.2    Zhou, Q.-Y.3    Koltun, V.4
  • 22
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2): 91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 23
    • 84986301062 scopus 로고    scopus 로고
    • A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation
    • N. Mayer, E. Ilg, P. Haeusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In CVPR, 2016.
    • (2016) CVPR
    • Mayer, N.1    Ilg, E.2    Haeusser, P.3    Fischer, P.4    Cremers, D.5    Dosovitskiy, A.6    Brox, T.7
  • 24
    • 84959203005 scopus 로고    scopus 로고
    • Object scene flow for autonomous vehicles
    • M. Menze and A. Geiger. Object scene flow for autonomous vehicles. In CVPR, 2015.
    • (2015) CVPR
    • Menze, M.1    Geiger, A.2
  • 26
    • 84898409565 scopus 로고    scopus 로고
    • PatchMatch stereo - Stereo matching with slanted support windows
    • C. R. Michael Bleyer and C. Rother. PatchMatch Stereo - Stereo Matching with Slanted Support Windows. In BMVC, 2011.
    • (2011) BMVC
    • Michael Bleyer, C.R.1    Rother, C.2
  • 27
    • 0029702958 scopus 로고    scopus 로고
    • Occlusion detectable stereo - Occlusion patterns in camera matrix
    • Y. Nakamura, T. Matsuura, K. Satoh, and Y. Ohta. Occlusion detectable stereo - occlusion patterns in camera matrix. In CVPR, 1996.
    • (1996) CVPR
    • Nakamura, Y.1    Matsuura, T.2    Satoh, K.3    Ohta, Y.4
  • 28
    • 85015485971 scopus 로고    scopus 로고
    • MobileFusion: Real-time volumetric surface reconstruction and dense tracking on mobile phones
    • P. Ondrúška, P. Kohli, and S. Izadi. MobileFusion: Real-time Volumetric Surface Reconstruction and Dense Tracking On Mobile Phones. In ISMAR, 2015.
    • (2015) ISMAR
    • Ondrúška, P.1    Kohli, P.2    Izadi, S.3
  • 29
    • 84863626688 scopus 로고    scopus 로고
    • On learning conditional random fields for stereo
    • C. J. Pal, J. J. Weinman, L. C. Tran, and D. Scharstein. On Learning Conditional Random Fields for Stereo. IJCV, 99(3): 319-337, 2012.
    • (2012) IJCV , vol.99 , Issue.3 , pp. 319-337
    • Pal, C.J.1    Weinman, J.J.2    Tran, L.C.3    Scharstein, D.4
  • 30
    • 84977533998 scopus 로고    scopus 로고
    • HighPerformance and tunable stereo reconstruction
    • S. Pillai, S. Ramalingam, and J. J. Leonard. HighPerformance and Tunable Stereo Reconstruction. In ICRA, 2016.
    • (2016) ICRA
    • Pillai, S.1    Ramalingam, S.2    Leonard, J.J.3
  • 31
    • 53849114297 scopus 로고    scopus 로고
    • Towards 3d point cloud based object maps for household environments
    • R. B. Rusu, Z. C. Marton, N. Blodow, M. E. Dolha, and M. Beetz. Towards 3d point cloud based object maps for household environments. RAS, 56(11): 927-941, 2008.
    • (2008) RAS , vol.56 , Issue.11 , pp. 927-941
    • Rusu, R.B.1    Marton, Z.C.2    Blodow, N.3    Dolha, M.E.4    Beetz, M.5
  • 33
    • 0036537472 scopus 로고    scopus 로고
    • A taxonomy and evaluation of dense two-frame stereo correspondence algorithms
    • D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV, 47: 7-42, 2002.
    • (2002) IJCV , vol.47 , pp. 7-42
    • Scharstein, D.1    Szeliski, R.2
  • 34
    • 0041939772 scopus 로고    scopus 로고
    • High-accuracy stereo depth maps using structured light
    • D. Scharstein and R. Szeliski. High-accuracy Stereo Depth Maps Using Structured Light. In CVPR, 2003.
    • (2003) CVPR
    • Scharstein, D.1    Szeliski, R.2
  • 36
    • 84961727530 scopus 로고    scopus 로고
    • 3D modeling on the go: Interactive 3D reconstruction of large-scale scenes on mobile devices
    • T. Schöps, T. Sattler, C. Häne, and M. Pollefeys. 3D modeling on the go: Interactive 3D reconstruction of large-scale scenes on mobile devices. In 3DV, 2015.
    • (2015) 3DV
    • Schöps, T.1    Sattler, T.2    Häne, C.3    Pollefeys, M.4
  • 38
    • 33845591853 scopus 로고    scopus 로고
    • A comparison and evaluation of multi-view stereo reconstruction algorithms
    • S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A comparison and evaluation of multi-view stereo reconstruction algorithms. In CVPR, 2006.
    • (2006) CVPR
    • Seitz, S.M.1    Curless, B.2    Diebel, J.3    Scharstein, D.4    Szeliski, R.5
  • 40
    • 51949094195 scopus 로고    scopus 로고
    • On benchmarking camera calibration and multi-view stereo for high resolution imagery
    • C. Strecha, W. von Hansen, L. J. V. Gool, P. Fua, and U. Thoennessen. On benchmarking camera calibration and multi-view stereo for high resolution imagery. In CVPR, 2008.
    • (2008) CVPR
    • Strecha, C.1    Von Hansen, W.2    Gool, L.J.V.3    Fua, P.4    Thoennessen, U.5
  • 42
    • 77949875753 scopus 로고    scopus 로고
    • Daisy: An efficient dense descriptor applied to wide baseline stereo
    • May
    • E. Tola, V. Lepetit, and P. Fua. Daisy: An efficient dense descriptor applied to wide baseline stereo. PAMI, 32(5): 815-830, May 2010.
    • (2010) PAMI , vol.32 , Issue.5 , pp. 815-830
    • Tola, E.1    Lepetit, V.2    Fua, P.3
  • 43
    • 63149111424 scopus 로고    scopus 로고
    • Differences between stereo and motion behaviour on synthetic and real-world stereo sequences
    • T. Vaudrey, C. Rabe, R. Klette, and J. Milburn. Differences between stereo and motion behaviour on synthetic and real-world stereo sequences. In IVCNZ, 2008.
    • (2008) IVCNZ
    • Vaudrey, T.1    Rabe, C.2    Klette, R.3    Milburn, J.4
  • 44
    • 84958170275 scopus 로고    scopus 로고
    • Efficient joint segmentation, occlusion labeling, stereo and flow estimation
    • K. Yamaguchi, D. McAllester, and R. Urtasun. Efficient joint segmentation, occlusion labeling, stereo and flow estimation. In ECCV, 2014.
    • (2014) ECCV
    • Yamaguchi, K.1    McAllester, D.2    Urtasun, R.3
  • 45
    • 84979924151 scopus 로고    scopus 로고
    • Stereo matching by training a convolutional neural network to compare image patches
    • J. Zbontar and Y. LeCun. Stereo matching by training a convolutional neural network to compare image patches. Journal of Machine Learning Research, 17: 1-32, 2016.
    • (2016) Journal of Machine Learning Research , vol.17 , pp. 1-32
    • Zbontar, J.1    LeCun, Y.2
  • 46
    • 84973866076 scopus 로고    scopus 로고
    • Meshstereo: A global stereo model with mesh alignment regularization for view interpolation
    • C. Zhang, Z. Li, Y. Cheng, R. Cai, H. Chao, and Y. Rui. Meshstereo: A global stereo model with mesh alignment regularization for view interpolation. In ICCV, 2015.
    • (2015) ICCV
    • Zhang, C.1    Li, Z.2    Cheng, Y.3    Cai, R.4    Chao, H.5    Rui, Y.6
  • 47
    • 84905718962 scopus 로고    scopus 로고
    • Color map optimization for 3d reconstruction with consumer depth cameras
    • Q. Zhou and V. Koltun. Color map optimization for 3d reconstruction with consumer depth cameras. In SIGGRAPH, 2014.
    • (2014) SIGGRAPH
    • Zhou, Q.1    Koltun, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.