메뉴 건너뛰기




Volumn 34, Issue 10, 2017, Pages 2690-2703

The Influence of Polyploidy on the Evolution of Yeast Grown in a Sub-Optimal Carbon Source

Author keywords

adaptive evolution; experimental evolution; expression data; genomics; polyploidy; yeast

Indexed keywords

CARBOHYDRATE; CARBON; FUNGAL RNA; GLUCOSE; PROTEIN; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 85030680905     PISSN: 07374038     EISSN: 15371719     Source Type: Journal    
DOI: 10.1093/molbev/msx205     Document Type: Article
Times cited : (26)

References (85)
  • 1
    • 0015964603 scopus 로고
    • Population studies in microorganisms
    • Adams J, Hansche PE. 1974. Population studies in microorganisms. Genetics 76:327-335.
    • (1974) Genetics , vol.76 , pp. 327-335
    • Adams, J.1    Hansche, P.E.2
  • 2
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol. 11:R106.
    • (2010) Genome Biol. , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 3
    • 0037399053 scopus 로고    scopus 로고
    • Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae
    • Anderson JB, Sirjusingh C, Parsons AB, Boone C, Wickens C, Cowen LE, Kohn LM. 2003. Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics 163:1287-1298.
    • (2003) Genetics , vol.163 , pp. 1287-1298
    • Anderson, J.B.1    Sirjusingh, C.2    Parsons, A.B.3    Boone, C.4    Wickens, C.5    Cowen, L.E.6    Kohn, L.M.7
  • 4
    • 11244294685 scopus 로고    scopus 로고
    • Haploidy, diploidy and evolution of antifungal drug resistance in Saccharomyces cerevisiae
    • Anderson JB, Sirjusingh C, Ricker N. 2004. Haploidy, diploidy and evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics 168:1915-1923.
    • (2004) Genetics , vol.168 , pp. 1915-1923
    • Anderson, J.B.1    Sirjusingh, C.2    Ricker, N.3
  • 5
    • 0038577154 scopus 로고    scopus 로고
    • Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains
    • Bennett RJ, Johnson AD. 2003. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J. 22:2505-2515.
    • (2003) EMBO J. , vol.22 , pp. 2505-2515
    • Bennett, R.J.1    Johnson, A.D.2
  • 6
    • 84964561931 scopus 로고    scopus 로고
    • Ploidy plasticity: A rapid and reversible strategy for adaptation to stress
    • Berman J. 2016. Ploidy plasticity: A rapid and reversible strategy for adaptation to stress. FEMS Yeast Res. 16:1-5.
    • (2016) FEMS Yeast Res. , vol.16 , pp. 1-5
    • Berman, J.1
  • 7
    • 84905049901 scopus 로고    scopus 로고
    • Trimmomatic: A flexible trimmer for Illumina sequence data
    • Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120
    • (2014) Bioinformatics , vol.30 , pp. 2114-2120
    • Bolger, A.M.1    Lohse, M.2    Usadel, B.3
  • 8
    • 0031904230 scopus 로고    scopus 로고
    • Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment
    • Brown CJ, Todd KM, Rosenzweig RF. 1998.Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Mol Biol Evol. 15:931-942.
    • (1998) Mol Biol Evol. , vol.15 , pp. 931-942
    • Brown, C.J.1    Todd, K.M.2    Rosenzweig, R.F.3
  • 11
    • 0030669755 scopus 로고    scopus 로고
    • Synthesis of mannose-(inositol-P) 2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) gene
    • Dickson RC, Nagiec EE, Wells GB, Nagiec MM, Lester RL. 1997. Synthesis of mannose-(inositol-P) 2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) gene. Biochemistry 272:29620-29625.
    • (1997) Biochemistry , vol.272 , pp. 29620-29625
    • Dickson, R.C.1    Nagiec, E.E.2    Wells, G.B.3    Nagiec, M.M.4    Lester, R.L.5
  • 12
    • 84870904073 scopus 로고    scopus 로고
    • MTH1 and RGT1 demonstrate combined haploinsufficiency in regulation of the hexose transporter genes in Saccharomyces cerevisiae
    • Dietzel KL, Ramakrishnan V, Murphy EE, Bisson LF. 2012. MTH1 and RGT1 demonstrate combined haploinsufficiency in regulation of the hexose transporter genes in Saccharomyces cerevisiae. BMC Genet. 13:107.
    • (2012) BMC Genet. , vol.13 , pp. 107
    • Dietzel, K.L.1    Ramakrishnan, V.2    Murphy, E.E.3    Bisson, L.F.4
  • 15
    • 84901355368 scopus 로고    scopus 로고
    • The fates of mutant lineages and the distribution of fitness effects of beneficial mutations in laboratory budding yeast populations
    • Frenkel EM, Good BH, Desai MM. 2014. The fates of mutant lineages and the distribution of fitness effects of beneficial mutations in laboratory budding yeast populations. Genetics 196:1217-1226.
    • (2014) Genetics , vol.196 , pp. 1217-1226
    • Frenkel, E.M.1    Good, B.H.2    Desai, M.M.3
  • 16
    • 27144507868 scopus 로고    scopus 로고
    • Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells
    • Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D. 2005. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043-1047.
    • (2005) Nature , vol.437 , pp. 1043-1047
    • Fujiwara, T.1    Bandi, M.2    Nitta, M.3    Ivanova, E.V.4    Bronson, R.T.5    Pellman, D.6
  • 18
    • 84872046076 scopus 로고    scopus 로고
    • Mutational effects depend on ploidy level: All else is not equal
    • Gerstein AC. 2012. Mutational effects depend on ploidy level: All else is not equal. Biol Lett. 9:20120614.
    • (2012) Biol Lett. , vol.9 , pp. 20120614
    • Gerstein, A.C.1
  • 19
    • 33749420389 scopus 로고    scopus 로고
    • Genomic convergence toward diploidy in Saccharomyces cerevisiae
    • Gerstein AC, Chun HJE, Grant A, Otto SP. 2006. Genomic convergence toward diploidy in Saccharomyces cerevisiae. PLo S Genet. 2:1396-1401.
    • (2006) PLo S Genet. , vol.2 , pp. 1396-1401
    • Gerstein, A.C.1    Chun, H.J.E.2    Grant, A.3    Otto, S.P.4
  • 20
  • 21
    • 40949087238 scopus 로고    scopus 로고
    • Ploidy reduction in Saccharomyces cerevisiae
    • Gerstein AC, Mcbride RM, Otto SP. 2008. Ploidy reduction in Saccharomyces cerevisiae. Biol Lett. 4:91-94.
    • (2008) Biol Lett. , vol.4 , pp. 91-94
    • Gerstein, A.C.1    McBride, R.M.2    Otto, S.P.3
  • 22
    • 69249203618 scopus 로고    scopus 로고
    • Ploidy and the causes of genomic evolution
    • Gerstein AC, Otto SP. 2009. Ploidy and the causes of genomic evolution. J Hered. 100:571-581.
    • (2009) J Hered. , vol.100 , pp. 571-581
    • Gerstein, A.C.1    Otto, S.P.2
  • 25
    • 0031800748 scopus 로고    scopus 로고
    • Mot3, a Zn finger transcription factor that modulates gene expression and attenuates mating pheromone signaling in Saccharomyces cerevisiae
    • Grishin AV, Rothenberg M, Downs MA, Blumer KJ. 1998. Mot3, a Zn finger transcription factor that modulates gene expression and attenuates mating pheromone signaling in Saccharomyces cerevisiae. Genetics 149:879-892.
    • (1998) Genetics , vol.149 , pp. 879-892
    • Grishin, A.V.1    Rothenberg, M.2    Downs, M.A.3    Blumer, K.J.4
  • 27
    • 0035968336 scopus 로고    scopus 로고
    • Coordinate control of sphingolipid biosynthesis and multidrug resistance in Saccharomyces cerevisiae
    • Hallstrom TC, Lambert L, Schorling S, Balzi E, Goffeau A, Moye-Rowley WS. 2001. Coordinate control of sphingolipid biosynthesis and multidrug resistance in Saccharomyces cerevisiae. J Biol Chem. 276:23674-23680.
    • (2001) J Biol Chem. , vol.276 , pp. 23674-23680
    • Hallstrom, T.C.1    Lambert, L.2    Schorling, S.3    Balzi, E.4    Goffeau, A.5    Moye-Rowley, W.S.6
  • 29
    • 84875740522 scopus 로고    scopus 로고
    • Heritable remodeling of yeast multicellularity by an environmentally responsive prion
    • Holmes DL, Lancaster AK, Lindquist S, Halfmann R. 2013. Heritable remodeling of yeast multicellularity by an environmentally responsive prion. Cell 153:153-165.
    • (2013) Cell , vol.153 , pp. 153-165
    • Holmes, D.L.1    Lancaster, A.K.2    Lindquist, S.3    Halfmann, R.4
  • 30
    • 84893817979 scopus 로고    scopus 로고
    • Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments
    • Hong J, Gresham D. 2014. Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments. PLo S Genet. 10:e1004041.
    • (2014) PLo S Genet. , vol.10 , pp. e1004041
    • Hong, J.1    Gresham, D.2
  • 31
    • 0036683476 scopus 로고    scopus 로고
    • Mot3 is a transcriptional repressor of ergosterol biosynthesis genes and is required for normal vacuolar function in Saccharomyces cerevisiae
    • Hongay C, Jia N, Bard M, Winston F. 2002. Mot3 is a transcriptional repressor of ergosterol biosynthesis genes and is required for normal vacuolar function in Saccharomyces cerevisiae. EMBO J. 21:4114-4124.
    • (2002) EMBO J. , vol.21 , pp. 4114-4124
    • Hongay, C.1    Jia, N.2    Bard, M.3    Winston, F.4
  • 32
    • 71749085460 scopus 로고    scopus 로고
    • Polyploidy and genome restructuring: A variety of outcomes
    • Hufton AL, Panopoulou G. 2009. Polyploidy and genome restructuring: A variety of outcomes. Curr Opin Genet Dev. 19:600-606.
    • (2009) Curr Opin Genet Dev. , vol.19 , pp. 600-606
    • Hufton, A.L.1    Panopoulou, G.2
  • 33
    • 56749107039 scopus 로고    scopus 로고
    • Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae
    • Kao KC, Sherlock G. 2008. Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat Genet. 40:1499-1504.
    • (2008) Nat Genet. , vol.40 , pp. 1499-1504
    • Kao, K.C.1    Sherlock, G.2
  • 34
    • 84864427224 scopus 로고    scopus 로고
    • Is more better Polyploidy and parasite resistance
    • King KC, Seppala O, Neiman M. 2012. Is more better Polyploidy and parasite resistance. Biol Lett. 8:598-600.
    • (2012) Biol Lett. , vol.8 , pp. 598-600
    • King, K.C.1    Seppala, O.2    Neiman, M.3
  • 35
    • 0032948292 scopus 로고    scopus 로고
    • Unpredictable fitness transitions between haploid and diploid strains of the genetically loaded yeast Saccharomyces cerevisiae
    • Korona R. 1999. Unpredictable fitness transitions between haploid and diploid strains of the genetically loaded yeast Saccharomyces cerevisiae. Genetics 151:77-85.
    • (1999) Genetics , vol.151 , pp. 77-85
    • Korona, R.1
  • 36
    • 84879061636 scopus 로고    scopus 로고
    • Improved use of a public good selects for the evolution of undifferentiated multicellularity
    • Koschwanez JH, Foster KR, Murray AW. 2013. Improved use of a public good selects for the evolution of undifferentiated multicellularity. Elife 2013:1-27.
    • (2013) Elife , vol.2013 , pp. 1-27
    • Koschwanez, J.H.1    Foster, K.R.2    Murray, A.W.3
  • 37
    • 0035910270 scopus 로고    scopus 로고
    • Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
    • Krogh a, Larsson B, von Heijne G, Sonnhammer E. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol. 305:567-580.
    • (2001) J Mol Biol. , vol.305 , pp. 567-580
    • Krogh, A.1    Larsson, B.2    Von Heijne, G.3    Sonnhammer, E.4
  • 38
    • 79955590028 scopus 로고    scopus 로고
    • Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape
    • Kvitek DJ, Sherlock G. 2011. Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLo S Genet. 7:e1002056.
    • (2011) PLo S Genet. , vol.7 , pp. e1002056
    • Kvitek, D.J.1    Sherlock, G.2
  • 39
    • 84888213196 scopus 로고    scopus 로고
    • Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment
    • Kvitek DJ, Sherlock G. 2013. Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment. PLo S Genet. 9:e1003972.
    • (2013) PLo S Genet. , vol.9 , pp. e1003972
    • Kvitek, D.J.1    Sherlock, G.2
  • 41
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie 2
    • Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357-359.
    • (2012) Nat Methods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.L.2
  • 44
    • 0025818026 scopus 로고
    • Dominant and recessive suppressors that restore glucose transport in a yeast snf3 mutant
    • Marshall-Carlson L, Neigeborn L, Coons D, Bisson L, Carlson M. 1991. Dominant and recessive suppressors that restore glucose transport in a yeast snf3 mutant. Genetics 128:505-512.
    • (1991) Genetics , vol.128 , pp. 505-512
    • Marshall-Carlson, L.1    Neigeborn, L.2    Coons, D.3    Bisson, L.4    Carlson, M.5
  • 45
    • 0025007652 scopus 로고
    • High levels of chromosome instability in polyploids of Saccharomyces cerevisiae
    • Mayer VW, Aguilera A. 1990. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat Res. 231:177-186.
    • (1990) Mutat Res. , vol.231 , pp. 177-186
    • Mayer, V.W.1    Aguilera, A.2
  • 46
    • 84962184062 scopus 로고    scopus 로고
    • Different facets of copy number changes: Permanent, transient, and adaptive
    • Mishra S, Whetstine JR. 2016. Different facets of copy number changes: Permanent, transient, and adaptive.Mol Cell Biol. 36:1050-1063.
    • (2016) Mol Cell Biol. , vol.36 , pp. 1050-1063
    • Mishra, S.1    Whetstine, J.R.2
  • 48
    • 67649836352 scopus 로고    scopus 로고
    • Microsatellite analysis of genetic diversity among clinical and nonclinical Saccharomyces cerevisiae isolates suggests heterozygote advantage in clinical environments
    • Muller LAH, Mc Cusker JH. 2009. Microsatellite analysis of genetic diversity among clinical and nonclinical Saccharomyces cerevisiae isolates suggests heterozygote advantage in clinical environments. Mol Ecol. 18:2779-2786.
    • (2009) Mol Ecol. , vol.18 , pp. 2779-2786
    • Muller, L.A.H.1    Mc Cusker, J.H.2
  • 49
    • 0028224163 scopus 로고
    • Does diploidy increase the rate of adaptation
    • Orr HA, Otto SP. 1994. Does diploidy increase the rate of adaptation Genetics 136:1475-1480.
    • (1994) Genetics , vol.136 , pp. 1475-1480
    • Orr, H.A.1    Otto, S.P.2
  • 50
    • 35548954250 scopus 로고    scopus 로고
    • The evolutionary consequences of polyploidy
    • Otto SP. 2007. The evolutionary consequences of polyploidy. Cell 131:452-462.
    • (2007) Cell , vol.131 , pp. 452-462
    • Otto, S.P.1
  • 51
    • 0034500239 scopus 로고    scopus 로고
    • Polyploid incidence and evolution
    • Otto SP, Whitton J. 2000. Polyploid incidence and evolution. Annu Rev Genet. 34:401-437.
    • (2000) Annu Rev Genet. , vol.34 , pp. 401-437
    • Otto, S.P.1    Whitton, J.2
  • 52
    • 0029864499 scopus 로고    scopus 로고
    • Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression
    • Ozcan S, Dover J, Rosenwald AG, Wölfl S, Johnston M. 1996. Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci USA. 93:12428-12432.
    • (1996) Proc Natl Acad Sci USA. , vol.93 , pp. 12428-12432
    • Ozcan, S.1    Dover, J.2    Rosenwald, A.G.3    Wölfl, S.4    Johnston, M.5
  • 53
    • 0028872732 scopus 로고
    • Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose
    • Ozcan S, Johnston M. 1995. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose.Mol Cell Biol. 15:1564-1572.
    • (1995) Mol Cell Biol. , vol.15 , pp. 1564-1572
    • Ozcan, S.1    Johnston, M.2
  • 54
    • 0032865543 scopus 로고    scopus 로고
    • Function and regulation of yeast hexose transporters
    • Ozcan S, Johnston M. 1999. Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev. 63:554-569.
    • (1999) Microbiol Mol Biol Rev. , vol.63 , pp. 554-569
    • Ozcan, S.1    Johnston, M.2
  • 55
    • 80051751651 scopus 로고    scopus 로고
    • Ploidy influences rarity and invasiveness in plants
    • Pandit MK, Pocock MJO, Kunin WE. 2011. Ploidy influences rarity and invasiveness in plants. J Ecol. 99:1108-1115.
    • (2011) J Ecol. , vol.99 , pp. 1108-1115
    • Pandit, M.K.1    Pocock, M.J.O.2    Kunin, W.E.3
  • 56
    • 0020640576 scopus 로고
    • Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid yeast populations
    • Paquin C, Adams J. 1983. Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid yeast populations. Nature 302:495-500.
    • (1983) Nature , vol.302 , pp. 495-500
    • Paquin, C.1    Adams, J.2
  • 57
    • 84994201617 scopus 로고    scopus 로고
    • High-throughput identification of adaptivemutations in experimentally evolved yeast populations
    • Payen C, Sunshine AB, Ong GT, Pogachar JL, Zhao W, Dunham MJ. 2016. High-throughput identification of adaptivemutations in experimentally evolved yeast populations. PLOS Genet. 12:e1006339.
    • (2016) PLOS Genet. , vol.12 , pp. e1006339
    • Payen, C.1    Sunshine, A.B.2    Ong, G.T.3    Pogachar, J.L.4    Zhao, W.5    Dunham, M.J.6
  • 58
    • 70349325524 scopus 로고    scopus 로고
    • The evolutionary significance of ancient genome duplications
    • Van de Peer Y, Maere S, Meyer A. 2009. The evolutionary significance of ancient genome duplications. Nat Rev Genet. 10:725-732.
    • (2009) Nat Rev Genet. , vol.10 , pp. 725-732
    • Van De Peer, Y.1    Maere, S.2    Meyer, A.3
  • 59
    • 15544364487 scopus 로고    scopus 로고
    • How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose
    • Polish J. a, Kim J-H, Johnston M. 2005. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose. Genetics 169:583-594.
    • (2005) Genetics , vol.169 , pp. 583-594
    • Polish, J.A.1    Kim, J.-H.2    Johnston, M.3
  • 61
    • 2942718723 scopus 로고    scopus 로고
    • Control of stochasticity in eukaryotic gene expression
    • Raser JM, Shea EKO. 2006. Control of stochasticity in eukaryotic gene expression. Science 304:1811-1814.
    • (2006) Science , vol.304 , pp. 1811-1814
    • Raser, J.M.1    Shea, E.K.O.2
  • 62
    • 70350367853 scopus 로고    scopus 로고
    • Asymmetric signal transduction through paralogs that comprise a genetic switch for sugar sensing in Saccharomyces cerevisiae
    • Sabina J, Johnston M. 2009. Asymmetric signal transduction through paralogs that comprise a genetic switch for sugar sensing in Saccharomyces cerevisiae. J Biol Chem. 284:29635-29643.
    • (2009) J Biol Chem. , vol.284 , pp. 29635-29643
    • Sabina, J.1    Johnston, M.2
  • 63
    • 0033986343 scopus 로고    scopus 로고
    • The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3-A nd Rgt2-dependent glucose signaling in yeast
    • Schulte F, Wieczorke R, Hollenberg CP, Boles E. 2000. The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3-A nd Rgt2-dependent glucose signaling in yeast. J Bacteriol. 182:540-542.
    • (2000) J Bacteriol. , vol.182 , pp. 540-542
    • Schulte, F.1    Wieczorke, R.2    Hollenberg, C.P.3    Boles, E.4
  • 64
    • 84979905215 scopus 로고    scopus 로고
    • Heterozygote advantage is a common outcome of adaptation in Saccharomyces cerevisiae
    • Sellis D, Kvitek DJ, Dunn B, Sherlock G, Petrov DA. 2016. Heterozygote advantage is a common outcome of adaptation in Saccharomyces cerevisiae. Genetics 203:1401-1413.
    • (2016) Genetics , vol.203 , pp. 1401-1413
    • Sellis, D.1    Kvitek, D.J.2    Dunn, B.3    Sherlock, G.4    Petrov, D.A.5
  • 66
    • 36549038087 scopus 로고    scopus 로고
    • Consequences of genome duplication
    • Sémon M, Wolfe KH. 2007. Consequences of genome duplication. Curr Opin Genet Dev. 17:505-512.
    • (2007) Curr Opin Genet Dev. , vol.17 , pp. 505-512
    • Sémon, M.1    Wolfe, K.H.2
  • 67
    • 84904817542 scopus 로고    scopus 로고
    • The polyploidy revolution then and now: Stebbins revisited
    • Soltis DE, Visger CJ, Soltis PS. 2014. The polyploidy revolution then and now: Stebbins revisited. Am J Bot. 101:1057-1078.
    • (2014) Am J Bot. , vol.101 , pp. 1057-1078
    • Soltis, D.E.1    Visger, C.J.2    Soltis, P.S.3
  • 68
    • 0007631972 scopus 로고
    • The significance of polyploidy in plant evolution
    • Stebbins GL. 1940. The significance of polyploidy in plant evolution. Am Nat. 74:54-66.
    • (1940) Am Nat. , vol.74 , pp. 54-66
    • Stebbins, G.L.1
  • 69
    • 85027924576 scopus 로고    scopus 로고
    • Ploidy changes and genome stability in yeast
    • Storchova Z. 2014. Ploidy changes and genome stability in yeast. Yeast 31:421-430.
    • (2014) Yeast , vol.31 , pp. 421-430
    • Storchova, Z.1
  • 71
    • 0034903337 scopus 로고    scopus 로고
    • In vivo site-directed mutagenesis using oligonucleotides
    • Storici F, Lewis LK, Resnick MA. 2001. In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol. 19:773-776.
    • (2001) Nat Biotechnol. , vol.19 , pp. 773-776
    • Storici, F.1    Lewis, L.K.2    Resnick, M.A.3
  • 73
    • 33747153121 scopus 로고    scopus 로고
    • Ploidy controls the success of mutators and nature of mutations during budding yeast evolution
    • Thompson DA, Desai MM, Murray AW. 2006. Ploidy controls the success of mutators and nature of mutations during budding yeast evolution. Curr Biol. 16:1581-1590.
    • (2006) Curr Biol. , vol.16 , pp. 1581-1590
    • Thompson, D.A.1    Desai, M.M.2    Murray, A.W.3
  • 78
    • 78649953250 scopus 로고    scopus 로고
    • Control of transcription by cell size
    • Wu C, Rolfe P, Gifford D, Fink G. 2010. Control of transcription by cell size. PLo S Biol. 8:e1000523.
    • (2010) PLo S Biol. , vol.8 , pp. e1000523
    • Wu, C.1    Rolfe, P.2    Gifford, D.3    Fink, G.4
  • 81
    • 84882918753 scopus 로고    scopus 로고
    • Titan cells in Cryptococcus neoformans: Cells with a giant impact
    • Zaragoza O, Nielsen K. 2013. Titan cells in Cryptococcus neoformans: Cells with a giant impact. Curr Opin Microbiol. 16:409-413.
    • (2013) Curr Opin Microbiol. , vol.16 , pp. 409-413
    • Zaragoza, O.1    Nielsen, K.2
  • 82
    • 1842425679 scopus 로고    scopus 로고
    • Experimental studies of ploidy evolution in yeast
    • Zeyl C. 2004. Experimental studies of ploidy evolution in yeast. FEMS Microbiol Lett. 233:187-192.
    • (2004) FEMS Microbiol Lett. , vol.233 , pp. 187-192
    • Zeyl, C.1
  • 83
    • 0037462494 scopus 로고    scopus 로고
    • An evolutionary advantage of haploidy in large yeast populations
    • Zeyl C, Vanderford T, Carter M. 2003. An evolutionary advantage of haploidy in large yeast populations. Science 299:555-558.
    • (2003) Science , vol.299 , pp. 555-558
    • Zeyl, C.1    Vanderford, T.2    Carter, M.3
  • 84
    • 84983681720 scopus 로고    scopus 로고
    • Whole genome analysis of 132 clinical Saccharomyces cerevisiae strains reveals extensive ploidy variation
    • Zhu YO, Sherlock G, Petrov DA. 2016. Whole genome analysis of 132 clinical Saccharomyces cerevisiae strains reveals extensive ploidy variation. G3 Genes Genomes Genet. 6:2421-2434.
    • (2016) G3 Genes Genomes Genet. , vol.6 , pp. 2421-2434
    • Zhu, Y.O.1    Sherlock, G.2    Petrov, D.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.