-
1
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646–74.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
2
-
-
17644424955
-
A gain-of-function mutation of JAK2 in myeloproliferative disorders
-
Kralovics R, Passamonti F, Buser AS et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–90.
-
(2005)
N Engl J Med
, vol.352
, pp. 1779-1790
-
-
Kralovics, R.1
Passamonti, F.2
Buser, A.S.3
-
3
-
-
20244369569
-
Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis
-
Levine RL, Wadleigh M, Cools J et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–97.
-
(2005)
Cancer Cell
, vol.7
, pp. 387-397
-
-
Levine, R.L.1
Wadleigh, M.2
Cools, J.3
-
4
-
-
17844383458
-
A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera
-
James C, Ugo V, Le Couedic JP et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–8.
-
(2005)
Nature
, vol.434
, pp. 1144-1148
-
-
James, C.1
Ugo, V.2
Le Couedic, J.P.3
-
5
-
-
20144363192
-
Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders
-
Baxter EJ, Scott LM, Campbell PJ et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–61.
-
(2005)
Lancet
, vol.365
, pp. 1054-1061
-
-
Baxter, E.J.1
Scott, L.M.2
Campbell, P.J.3
-
6
-
-
33746437130
-
MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia
-
Pikman Y, Lee BH, Mercher T et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: e270.
-
(2006)
PLoS Med
, vol.3
-
-
Pikman, Y.1
Lee, B.H.2
Mercher, T.3
-
7
-
-
43249084493
-
Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice
-
Tiedt R, Hao-Shen H, Sobas MA et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 2008; 111: 3931–40.
-
(2008)
Blood
, vol.111
, pp. 3931-3940
-
-
Tiedt, R.1
Hao-Shen, H.2
Sobas, M.A.3
-
8
-
-
38349035684
-
Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F
-
Shide K, Shimoda HK, Kumano T et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia 2008; 22: 87–95.
-
(2008)
Leukemia
, vol.22
, pp. 87-95
-
-
Shide, K.1
Shimoda, H.K.2
Kumano, T.3
-
9
-
-
46749137278
-
Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice
-
Xing S, Wanting TH, Zhao W et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood 2008; 111: 5109–17.
-
(2008)
Blood
, vol.111
, pp. 5109-5117
-
-
Xing, S.1
Wanting, T.H.2
Zhao, W.3
-
10
-
-
77951759127
-
Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease
-
Akada H, Yan D, Zou H, Fiering S, Hutchison RE, Mohi MG. Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease. Blood 2010; 115: 3589–97.
-
(2010)
Blood
, vol.115
, pp. 3589-3597
-
-
Akada, H.1
Yan, D.2
Zou, H.3
Fiering, S.4
Hutchison, R.E.5
Mohi, M.G.6
-
11
-
-
77956280929
-
Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice
-
Marty C, Lacout C, Martin A et al. Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice. Blood 2010; 116: 783–7.
-
(2010)
Blood
, vol.116
, pp. 783-787
-
-
Marty, C.1
Lacout, C.2
Martin, A.3
-
12
-
-
77956578342
-
JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia
-
Li J, Spensberger D, Ahn JS et al. JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood 2010; 116: 1528–38.
-
(2010)
Blood
, vol.116
, pp. 1528-1538
-
-
Li, J.1
Spensberger, D.2
Ahn, J.S.3
-
13
-
-
84886850069
-
JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNalpha
-
Hasan S, Lacout C, Marty C et al. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNalpha. Blood 2013; 122: 1464–77.
-
(2013)
Blood
, vol.122
, pp. 1464-1477
-
-
Hasan, S.1
Lacout, C.2
Marty, C.3
-
14
-
-
84890372480
-
Somatic mutations of calreticulin in myeloproliferative neoplasms
-
Klampfl T, Gisslinger H, Harutyunyan AS et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013; 369: 2379–90.
-
(2013)
N Engl J Med
, vol.369
, pp. 2379-2390
-
-
Klampfl, T.1
Gisslinger, H.2
Harutyunyan, A.S.3
-
15
-
-
84890328032
-
Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2
-
Nangalia J, Massie CE, Baxter EJ et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013; 369: 2391–405.
-
(2013)
N Engl J Med
, vol.369
, pp. 2391-2405
-
-
Nangalia, J.1
Massie, C.E.2
Baxter, E.J.3
-
16
-
-
0015955240
-
Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum
-
Ostwald TJ, MacLennan DH. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem 1974; 249: 974–9.
-
(1974)
J Biol Chem
, vol.249
, pp. 974-979
-
-
Ostwald, T.J.1
MacLennan, D.H.2
-
17
-
-
0024819297
-
Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum
-
Fliegel L, Burns K, MacLennan DH, Reithmeier RA, Michalak M. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 1989; 264: 21522–8.
-
(1989)
J Biol Chem
, vol.264
, pp. 21522-21528
-
-
Fliegel, L.1
Burns, K.2
MacLennan, D.H.3
Reithmeier, R.A.4
Michalak, M.5
-
18
-
-
0024829021
-
Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein
-
Smith MJ, Koch GL. Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. EMBO J 1989; 8: 3581–6.
-
(1989)
EMBO J
, vol.8
, pp. 3581-3586
-
-
Smith, M.J.1
Koch, G.L.2
-
19
-
-
0025937289
-
SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane
-
Wada I, Rindress D, Cameron PH et al. SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem 1991; 266: 19599–610.
-
(1991)
J Biol Chem
, vol.266
, pp. 19599-19610
-
-
Wada, I.1
Rindress, D.2
Cameron, P.H.3
-
20
-
-
0027156495
-
Interaction with newly synthesized and retained proteins in the endoplasmic reticulum suggests a chaperone function for human integral membrane protein IP90 (calnexin)
-
David V, Hochstenbach F, Rajagopalan S, Brenner MB. Interaction with newly synthesized and retained proteins in the endoplasmic reticulum suggests a chaperone function for human integral membrane protein IP90 (calnexin). J Biol Chem 1993; 268: 9585–92.
-
(1993)
J Biol Chem
, vol.268
, pp. 9585-9592
-
-
David, V.1
Hochstenbach, F.2
Rajagopalan, S.3
Brenner, M.B.4
-
21
-
-
0035802110
-
Functional specialization of calreticulin domains
-
Nakamura K, Zuppini A, Arnaudeau S et al. Functional specialization of calreticulin domains. J Cell Biol 2001; 154: 961–72.
-
(2001)
J Cell Biol
, vol.154
, pp. 961-972
-
-
Nakamura, K.1
Zuppini, A.2
Arnaudeau, S.3
-
22
-
-
0034680794
-
Thrombospondin mediates focal adhesion disassembly through interactions with cell surface calreticulin
-
Goicoechea S, Orr AW, Pallero MA, Eggleton P, Murphy-Ullrich JE. Thrombospondin mediates focal adhesion disassembly through interactions with cell surface calreticulin. J Biol Chem 2000; 275: 36358–68.
-
(2000)
J Biol Chem
, vol.275
, pp. 36358-36368
-
-
Goicoechea, S.1
Orr, A.W.2
Pallero, M.A.3
Eggleton, P.4
Murphy-Ullrich, J.E.5
-
23
-
-
0036169941
-
Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin
-
Gao B, Adhikari R, Howarth M et al. Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity 2002; 16: 99–109.
-
(2002)
Immunity
, vol.16
, pp. 99-109
-
-
Gao, B.1
Adhikari, R.2
Howarth, M.3
-
24
-
-
0035903289
-
C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells
-
Ogden CA, de Cathelineau A, Hoffmann PR et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 2001; 194: 781–95.
-
(2001)
J Exp Med
, vol.194
, pp. 781-795
-
-
Ogden, C.A.1
de Cathelineau, A.2
Hoffmann, P.R.3
-
25
-
-
26844468253
-
Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte
-
Gardai SJ, McPhillips KA, Frasch SC et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005; 123: 321–34.
-
(2005)
Cell
, vol.123
, pp. 321-334
-
-
Gardai, S.J.1
McPhillips, K.A.2
Frasch, S.C.3
-
26
-
-
14844352487
-
Impaired cytolytic activity in calreticulin-deficient CTLs
-
Sipione S, Ewen C, Shostak I, Michalak M, Bleackley RC. Impaired cytolytic activity in calreticulin-deficient CTLs. J Immunol 2005; 174: 3212–9.
-
(2005)
J Immunol
, vol.174
, pp. 3212-3219
-
-
Sipione, S.1
Ewen, C.2
Shostak, I.3
Michalak, M.4
Bleackley, R.C.5
-
27
-
-
0030910249
-
Calreticulin biosynthesis and processing in human myeloid cells: demonstration of signal peptide cleavage and N-glycosylation
-
Denning GM, Leidal KG, Holst VA et al. Calreticulin biosynthesis and processing in human myeloid cells: demonstration of signal peptide cleavage and N-glycosylation. Blood 1997; 90: 372–81.
-
(1997)
Blood
, vol.90
, pp. 372-381
-
-
Denning, G.M.1
Leidal, K.G.2
Holst, V.A.3
-
28
-
-
0037458633
-
Interactions of substrate with calreticulin, an endoplasmic reticulum chaperone
-
Kapoor M, Srinivas H, Kandiah E et al. Interactions of substrate with calreticulin, an endoplasmic reticulum chaperone. J Biol Chem 2003; 278: 6194–200.
-
(2003)
J Biol Chem
, vol.278
, pp. 6194-6200
-
-
Kapoor, M.1
Srinivas, H.2
Kandiah, E.3
-
29
-
-
0346727443
-
Mutational analysis provides molecular insight into the carbohydrate-binding region of calreticulin: pivotal roles of tyrosine-109 and aspartate-135 in carbohydrate recognition
-
Kapoor M, Ellgaard L, Gopalakrishnapai J et al. Mutational analysis provides molecular insight into the carbohydrate-binding region of calreticulin: pivotal roles of tyrosine-109 and aspartate-135 in carbohydrate recognition. Biochemistry 2004; 43: 97–106.
-
(2004)
Biochemistry
, vol.43
, pp. 97-106
-
-
Kapoor, M.1
Ellgaard, L.2
Gopalakrishnapai, J.3
-
30
-
-
0028973422
-
Identification of the Zn2 + binding region in calreticulin
-
Baksh S, Spamer C, Heilmann C, Michalak M. Identification of the Zn2 + binding region in calreticulin. FEBS Lett 1995; 376: 53–7.
-
(1995)
FEBS Lett
, vol.376
, pp. 53-57
-
-
Baksh, S.1
Spamer, C.2
Heilmann, C.3
Michalak, M.4
-
31
-
-
0346118859
-
Identification of an N-domain histidine essential for chaperone function in calreticulin
-
Guo L, Groenendyk J, Papp S et al. Identification of an N-domain histidine essential for chaperone function in calreticulin. J Biol Chem 2003; 278: 50645–53.
-
(2003)
J Biol Chem
, vol.278
, pp. 50645-50653
-
-
Guo, L.1
Groenendyk, J.2
Papp, S.3
-
32
-
-
0037133347
-
TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain
-
Frickel EM, Riek R, Jelesarov I, Helenius A, Wuthrich K, Ellgaard L. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc Natl Acad Sci USA 2002; 99: 1954–9.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 1954-1959
-
-
Frickel, E.M.1
Riek, R.2
Jelesarov, I.3
Helenius, A.4
Wuthrich, K.5
Ellgaard, L.6
-
33
-
-
33644860723
-
Identification by mutational analysis of amino acid residues essential in the chaperone function of calreticulin
-
Martin V, Groenendyk J, Steiner SS et al. Identification by mutational analysis of amino acid residues essential in the chaperone function of calreticulin. J Biol Chem 2006; 281: 2338–46.
-
(2006)
J Biol Chem
, vol.281
, pp. 2338-2346
-
-
Martin, V.1
Groenendyk, J.2
Steiner, S.S.3
-
34
-
-
0025788270
-
Expression of calreticulin in Escherichia coli and identification of its Ca2 + binding domains
-
Baksh S, Michalak M. Expression of calreticulin in Escherichia coli and identification of its Ca2 + binding domains. J Biol Chem 1991; 266: 21458–65.
-
(1991)
J Biol Chem
, vol.266
, pp. 21458-21465
-
-
Baksh, S.1
Michalak, M.2
-
35
-
-
0034799402
-
The Structure of calnexin, an ER chaperone involved in quality control of protein folding
-
Schrag JD, Bergeron JJ, Li Y et al. The Structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol Cell 2001; 8: 633–44.
-
(2001)
Mol Cell
, vol.8
, pp. 633-644
-
-
Schrag, J.D.1
Bergeron, J.J.2
Li, Y.3
-
37
-
-
78649641361
-
Structural basis of carbohydrate recognition by calreticulin
-
Kozlov G, Pocanschi CL, Rosenauer A et al. Structural basis of carbohydrate recognition by calreticulin. J Biol Chem 2010; 285: 38612–20.
-
(2010)
J Biol Chem
, vol.285
, pp. 38612-38620
-
-
Kozlov, G.1
Pocanschi, C.L.2
Rosenauer, A.3
-
38
-
-
79952663496
-
X-ray structure of the human calreticulin globular domain reveals a peptide-binding area and suggests a multi-molecular mechanism
-
Chouquet A, Paidassi H, Ling WL et al. X-ray structure of the human calreticulin globular domain reveals a peptide-binding area and suggests a multi-molecular mechanism. PLoS ONE 2011; 6: e17886.
-
(2011)
PLoS ONE
, vol.6
-
-
Chouquet, A.1
Paidassi, H.2
Ling, W.L.3
-
39
-
-
84929159925
-
Endogenous megakaryocytic colonies underline association between megakaryocytes and calreticulin mutations in essential thrombocythemia
-
Mondet J, Park JH, Menard A et al. Endogenous megakaryocytic colonies underline association between megakaryocytes and calreticulin mutations in essential thrombocythemia. Haematologica 2015; 100: e176–8.
-
(2015)
Haematologica
, vol.100
, pp. e176-e178
-
-
Mondet, J.1
Park, J.H.2
Menard, A.3
-
40
-
-
84960906311
-
Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms
-
Araki M, Yang Y, Masubuchi N et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood 2016; 127: 1307–16.
-
(2016)
Blood
, vol.127
, pp. 1307-1316
-
-
Araki, M.1
Yang, Y.2
Masubuchi, N.3
-
41
-
-
84960864909
-
Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis
-
Marty C, Pecquet C, Nivarthi H et al. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood 2016; 127: 1317–24.
-
(2016)
Blood
, vol.127
, pp. 1317-1324
-
-
Marty, C.1
Pecquet, C.2
Nivarthi, H.3
-
42
-
-
84962360217
-
Mutant calreticulin requires both its mutant c-terminus and the thrombopoietin receptor for oncogenic transformation
-
Elf S, Abdelfattah NS, Chen E et al. Mutant calreticulin requires both its mutant c-terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov 2016; 6: 368–81.
-
(2016)
Cancer Discov
, vol.6
, pp. 368-381
-
-
Elf, S.1
Abdelfattah, N.S.2
Chen, E.3
-
43
-
-
84960851640
-
Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants
-
Chachoua I, Pecquet C, El-Khoury M et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood 2016; 127: 1325–35.
-
(2016)
Blood
, vol.127
, pp. 1325-1335
-
-
Chachoua, I.1
Pecquet, C.2
El-Khoury, M.3
-
44
-
-
84997787492
-
Calreticulin mutant mice develop essential thrombocythemia that is ameliorated by the JAK inhibitor ruxolitinib
-
Shide K, Kameda T, Yamaji T et al. Calreticulin mutant mice develop essential thrombocythemia that is ameliorated by the JAK inhibitor ruxolitinib. Leukemia 2017; 31: 1136–44.
-
(2017)
Leukemia
, vol.31
, pp. 1136-1144
-
-
Shide, K.1
Kameda, T.2
Yamaji, T.3
-
45
-
-
84904401956
-
Type 1 versus Type 2 calreticulin mutations in essential thrombocythemia: a collaborative study of 1027 patients
-
Tefferi A, Wassie EA, Guglielmelli P et al. Type 1 versus Type 2 calreticulin mutations in essential thrombocythemia: a collaborative study of 1027 patients. Am J Hematol 2014; 89: E121–4.
-
(2014)
Am J Hematol
, vol.89
, pp. E121-E124
-
-
Tefferi, A.1
Wassie, E.A.2
Guglielmelli, P.3
-
46
-
-
84959370553
-
Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms
-
Pietra D, Rumi E, Ferretti VV et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia 2016; 30: 431–8.
-
(2016)
Leukemia
, vol.30
, pp. 431-438
-
-
Pietra, D.1
Rumi, E.2
Ferretti, V.V.3
-
47
-
-
84900432315
-
Mechanism of activation of protein kinase JAK2 by the growth hormone receptor
-
Brooks AJ, Dai W, O'Mara ML et al. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science 2014; 344: 1249783.
-
(2014)
Science
, vol.344
, pp. 1249783
-
-
Brooks, A.J.1
Dai, W.2
O'Mara, M.L.3
-
48
-
-
79960190017
-
Thrombopoietin receptor activation: transmembrane helix dimerization, rotation, and allosteric modulation
-
Matthews EE, Thevenin D, Rogers JM et al. Thrombopoietin receptor activation: transmembrane helix dimerization, rotation, and allosteric modulation. FASEB J 2011; 25: 2234–44.
-
(2011)
FASEB J
, vol.25
, pp. 2234-2244
-
-
Matthews, E.E.1
Thevenin, D.2
Rogers, J.M.3
-
49
-
-
80455174620
-
Orientation-specific signalling by thrombopoietin receptor dimers
-
Staerk J, Defour JP, Pecquet C et al. Orientation-specific signalling by thrombopoietin receptor dimers. EMBO J 2011; 30: 4398–413.
-
(2011)
EMBO J
, vol.30
, pp. 4398-4413
-
-
Staerk, J.1
Defour, J.P.2
Pecquet, C.3
-
50
-
-
0027507325
-
The calcium-binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes
-
Dupuis M, Schaerer E, Krause KH, Tschopp J. The calcium-binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes. J Exp Med 1993; 177: 1–7.
-
(1993)
J Exp Med
, vol.177
, pp. 1-7
-
-
Dupuis, M.1
Schaerer, E.2
Krause, K.H.3
Tschopp, J.4
-
51
-
-
0027956447
-
Calreticulin is released from activated neutrophils and binds to C1q and mannan-binding protein
-
Eggleton P, Lieu TS, Zappi EG et al. Calreticulin is released from activated neutrophils and binds to C1q and mannan-binding protein. Clin Immunol Immunopathol 1994; 72: 405–9.
-
(1994)
Clin Immunol Immunopathol
, vol.72
, pp. 405-409
-
-
Eggleton, P.1
Lieu, T.S.2
Zappi, E.G.3
-
52
-
-
84971254922
-
Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion
-
Han L, Schubert C, Kohler J et al. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion. J Hematol Oncol 2016; 9: 45.
-
(2016)
J Hematol Oncol
, vol.9
, pp. 45
-
-
Han, L.1
Schubert, C.2
Kohler, J.3
-
53
-
-
84923322628
-
Oncogenic Kit signals on endolysosomes and endoplasmic reticulum are essential for neoplastic mast cell proliferation
-
Obata Y, Toyoshima S, Wakamatsu E et al. Oncogenic Kit signals on endolysosomes and endoplasmic reticulum are essential for neoplastic mast cell proliferation. Nat Commun 2014; 5: 5715.
-
(2014)
Nat Commun
, vol.5
, pp. 5715
-
-
Obata, Y.1
Toyoshima, S.2
Wakamatsu, E.3
-
54
-
-
70350013557
-
Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes
-
Choudhary C, Olsen JV, Brandts C et al. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 2009; 36: 326–39.
-
(2009)
Mol Cell
, vol.36
, pp. 326-339
-
-
Choudhary, C.1
Olsen, J.V.2
Brandts, C.3
|