메뉴 건너뛰기




Volumn 14, Issue 9, 2017, Pages 3098-3104

DruGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico

Author keywords

adversarial autoencoder; deep learning; drug discovery; generative adversarial network; variational autoencoder

Indexed keywords

ADVERSARIAL AUTOENCODER MODEL; ARTICLE; CHEMICAL STRUCTURE; COMPUTER MODEL; EVALUATION STUDY; MOLECULAR MODEL; MOLECULE; PRIORITY JOURNAL; SAMPLING; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; COMPUTER SIMULATION; CONCEPT FORMATION; LEARNING; THEORETICAL MODEL;

EID: 85028890248     PISSN: 15438384     EISSN: 15438392     Source Type: Journal    
DOI: 10.1021/acs.molpharmaceut.7b00346     Document Type: Article
Times cited : (479)

References (31)
  • 1
    • 79959786193 scopus 로고    scopus 로고
    • How to revive breakthrough innovation in the pharmaceutical industry
    • Munos, B. H.; Chin, W. W. How to revive breakthrough innovation in the pharmaceutical industry Sci. Transl. Med. 2011, 3 (89) 89cm16 10.1126/scitranslmed.3002273
    • (2011) Sci. Transl. Med. , vol.3 , Issue.89 , pp. 89cm16
    • Munos, B.H.1    Chin, W.W.2
  • 2
    • 84950162061 scopus 로고    scopus 로고
    • Why and how have drug discovery strategies in pharma changed? What are the new mindsets?
    • Mignani, S.; Huber, S.; Tomas, H.; Rodrigues, J.; Majoral, J. P. Why and how have drug discovery strategies in pharma changed? What are the new mindsets? Drug Discovery Today 2016, 21 (2) 239-249 10.1016/j.drudis.2015.09.007
    • (2016) Drug Discovery Today , vol.21 , Issue.2 , pp. 239-249
    • Mignani, S.1    Huber, S.2    Tomas, H.3    Rodrigues, J.4    Majoral, J.P.5
  • 3
    • 84877349631 scopus 로고    scopus 로고
    • Druggable chemical space and enumerative combinatorics
    • Yu, M. J. Druggable chemical space and enumerative combinatorics J. Cheminf. 2013, 5 (1) 19 10.1186/1758-2946-5-19
    • (2013) J. Cheminf. , vol.5 , Issue.1 , pp. 19
    • Yu, M.J.1
  • 5
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning Nature 2015, 521 (7553) 436-444 10.1038/nature14539
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 6
    • 84968861400 scopus 로고    scopus 로고
    • Applications of Deep Learning in Biomedicine
    • Mamoshina, P.; Vieira, A.; Putin, E.; Zhavoronkov, A. Applications of Deep Learning in Biomedicine Mol. Pharmaceutics 2016, 13 (5) 1445-1454 10.1021/acs.molpharmaceut.5b00982
    • (2016) Mol. Pharmaceutics , vol.13 , Issue.5 , pp. 1445-1454
    • Mamoshina, P.1    Vieira, A.2    Putin, E.3    Zhavoronkov, A.4
  • 9
    • 84954372459 scopus 로고    scopus 로고
    • Deep Learning in Drug Discovery
    • Gawehn, E.; Hiss, J. A.; Schneider, G. Deep Learning in Drug Discovery Mol. Inf. 2016, 35 (1) 3-14 10.1002/minf.201501008
    • (2016) Mol. Inf. , vol.35 , Issue.1 , pp. 3-14
    • Gawehn, E.1    Hiss, J.A.2    Schneider, G.3
  • 10
    • 84979019529 scopus 로고    scopus 로고
    • Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data
    • Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data Mol. Pharmaceutics 2016, 13 (7) 2524-2530 10.1021/acs.molpharmaceut.6b00248
    • (2016) Mol. Pharmaceutics , vol.13 , Issue.7 , pp. 2524-2530
    • Aliper, A.1    Plis, S.2    Artemov, A.3    Ulloa, A.4    Mamoshina, P.5    Zhavoronkov, A.6
  • 11
    • 85028824119 scopus 로고    scopus 로고
    • Integrated deep learned transcriptomic and structure-based predictor of clinical trials outcomes
    • Artemov, A. V.; Putin, E.; Vanhaelen, Q.; Aliper, A.; Ozerov; Zhavoronkov, A. Integrated deep learned transcriptomic and structure-based predictor of clinical trials outcomes bioRxiv 2016, 10.1101/095653
    • (2016) BioRxiv
    • Artemov, A.V.1    Putin, E.2    Vanhaelen, Q.3    Aliper, A.4    Ozerov5    Zhavoronkov, A.6
  • 12
    • 85012890514 scopus 로고    scopus 로고
    • The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology
    • Kadurin, A.; Aliper, A.; Kazennov, A.; Mamoshina, P.; Vanhaelen, Q.; Khrabrov, K.; Zhavoronkov, A. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology Oncotarget 2017, 8 (7) 10883-10890 10.18632/oncotarget.14073
    • (2017) Oncotarget , vol.8 , Issue.7 , pp. 10883-10890
    • Kadurin, A.1    Aliper, A.2    Kazennov, A.3    Mamoshina, P.4    Vanhaelen, Q.5    Khrabrov, K.6    Zhavoronkov, A.7
  • 13
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E.; Osindero, S.; Teh, Y. W. A fast learning algorithm for deep belief nets Neural computation 2006, 18 (7) 1527-1554 10.1162/neco.2006.18.7.1527
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 14
    • 84862286946 scopus 로고    scopus 로고
    • Deep Boltzmann Machines
    • Salakhutdinov, R.; Hinton, G. Deep Boltzmann Machines PMLR 2009, 5, 448-455
    • (2009) PMLR , vol.5 , pp. 448-455
    • Salakhutdinov, R.1    Hinton, G.2
  • 15
    • 84928170467 scopus 로고    scopus 로고
    • Learning Deep Generative Models
    • Salakhutdinov, R. Learning Deep Generative Models Annu. Rev. Stat. Its Appl. 2015, 2, 361-385 10.1146/annurev-statistics-010814-020120
    • (2015) Annu. Rev. Stat. Its Appl. , vol.2 , pp. 361-385
    • Salakhutdinov, R.1
  • 17
    • 84976894417 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift PMLR 2015, 37, 448-456
    • (2015) PMLR , vol.37 , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 18
    • 84941620184 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • Kingma, D. P.; Ba, J. L. Adam: A method for stochastic optimization arXiv 2014, 1412.6980
    • (2014) ArXiv , pp. 14126980
    • Kingma, D.P.1    Ba, J.L.2
  • 19
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization J. Mach. Learn. Res. 2011, 12, 2121-2159
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 20
    • 85030222334 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks arXiv 2015, 1511.06434
    • (2015) ArXiv , pp. 151106434
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 22
    • 84919810317 scopus 로고    scopus 로고
    • Auto-encoding variational Bayes
    • Kingma, D. P.; Welling, M. Auto-encoding variational Bayes arXiv 2013, 1312.6114
    • (2013) ArXiv , pp. 13126114
    • Kingma, D.P.1    Welling, M.2
  • 23
    • 84990070233 scopus 로고    scopus 로고
    • Tutorial on variational autoencoders
    • Doersch, C. Tutorial on variational autoencoders arXiv 2016, 1606.05908
    • (2016) ArXiv , pp. 160605908
    • Doersch, C.1
  • 24
    • 84919908080 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • Rezende, D. J.; Mohamed, S.; Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models arXiv 2014, 1401.4082
    • (2014) ArXiv , pp. 14014082
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 29
    • 2942704243 scopus 로고    scopus 로고
    • ESOL: Estimating aqueous solubility directly from molecular structure
    • Delaney, J. S. ESOL: estimating aqueous solubility directly from molecular structure Journal of chemical information and computer sciences 2004, 44 (3) 1000-1005 10.1021/ci034243x
    • (2004) Journal of Chemical Information and Computer Sciences , vol.44 , Issue.3 , pp. 1000-1005
    • Delaney, J.S.1
  • 30
    • 84874752995 scopus 로고    scopus 로고
    • Drug solubility: Importance and enhancement techniques
    • Savjani, K. T.; Gajjar, A. K.; Savjani, J. K. Drug solubility: importance and enhancement techniques ISRN Pharm. 2012, 2012, 195727 10.5402/2012/195727
    • (2012) ISRN Pharm. , vol.2012 , pp. 195727
    • Savjani, K.T.1    Gajjar, A.K.2    Savjani, J.K.3
  • 31
    • 85028836838 scopus 로고    scopus 로고
    • NIPS 2016 Tutorial: Generative Adversarial Networks
    • Goodfellow, I. NIPS 2016 Tutorial: Generative Adversarial Networks arXiv 2016, 1701.00160
    • (2016) ArXiv , pp. 170100160
    • Goodfellow, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.