-
1
-
-
79959786193
-
How to revive breakthrough innovation in the pharmaceutical industry
-
Munos, B. H.; Chin, W. W. How to revive breakthrough innovation in the pharmaceutical industry Sci. Transl. Med. 2011, 3 (89) 89cm16 10.1126/scitranslmed.3002273
-
(2011)
Sci. Transl. Med.
, vol.3
, Issue.89
, pp. 89cm16
-
-
Munos, B.H.1
Chin, W.W.2
-
2
-
-
84950162061
-
Why and how have drug discovery strategies in pharma changed? What are the new mindsets?
-
Mignani, S.; Huber, S.; Tomas, H.; Rodrigues, J.; Majoral, J. P. Why and how have drug discovery strategies in pharma changed? What are the new mindsets? Drug Discovery Today 2016, 21 (2) 239-249 10.1016/j.drudis.2015.09.007
-
(2016)
Drug Discovery Today
, vol.21
, Issue.2
, pp. 239-249
-
-
Mignani, S.1
Huber, S.2
Tomas, H.3
Rodrigues, J.4
Majoral, J.P.5
-
3
-
-
84877349631
-
Druggable chemical space and enumerative combinatorics
-
Yu, M. J. Druggable chemical space and enumerative combinatorics J. Cheminf. 2013, 5 (1) 19 10.1186/1758-2946-5-19
-
(2013)
J. Cheminf.
, vol.5
, Issue.1
, pp. 19
-
-
Yu, M.J.1
-
4
-
-
85000896742
-
Design of efficient computational workflows for in silico drug repurposing
-
Vanhaelen, Q.; Mamoshina, P.; Aliper, A. M.; Artemov, A.; Lezhnina, K.; Ozerov, I.; Labat, I.; Zhavoronkov, A. Design of efficient computational workflows for in silico drug repurposing Drug Discovery Today 2017, 22 (2) 210-222 10.1016/j.drudis.2016.09.019
-
(2017)
Drug Discovery Today
, vol.22
, Issue.2
, pp. 210-222
-
-
Vanhaelen, Q.1
Mamoshina, P.2
Aliper, A.M.3
Artemov, A.4
Lezhnina, K.5
Ozerov, I.6
Labat, I.7
Zhavoronkov, A.8
-
5
-
-
84930630277
-
Deep learning
-
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning Nature 2015, 521 (7553) 436-444 10.1038/nature14539
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
6
-
-
84968861400
-
Applications of Deep Learning in Biomedicine
-
Mamoshina, P.; Vieira, A.; Putin, E.; Zhavoronkov, A. Applications of Deep Learning in Biomedicine Mol. Pharmaceutics 2016, 13 (5) 1445-1454 10.1021/acs.molpharmaceut.5b00982
-
(2016)
Mol. Pharmaceutics
, vol.13
, Issue.5
, pp. 1445-1454
-
-
Mamoshina, P.1
Vieira, A.2
Putin, E.3
Zhavoronkov, A.4
-
7
-
-
84976407069
-
Deep biomarkers of human aging: Application of deep neural networks to biomarker development
-
Putin, E.; Mamoshina, P.; Aliper, A.; Korzinkin, M.; Moskalev, A.; Kolosov, A.; Ostrovskiy, A.; Cantor, C.; Vijg, J.; Zhavoronkov, A. Deep biomarkers of human aging: Application of deep neural networks to biomarker development Aging 2016, 8 (5) 1021-1033 10.18632/aging.100968
-
(2016)
Aging
, vol.8
, Issue.5
, pp. 1021-1033
-
-
Putin, E.1
Mamoshina, P.2
Aliper, A.3
Korzinkin, M.4
Moskalev, A.5
Kolosov, A.6
Ostrovskiy, A.7
Cantor, C.8
Vijg, J.9
Zhavoronkov, A.10
-
8
-
-
84995704992
-
In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development
-
Ozerov, IV; Lezhnina, K. V.; Izumchenko, E.; Artemov, A. V.; Medintsev, S.; Vanhaelen, Q.; Aliper, A.; Vijg, J.; Osipov, A. N.; Labat, I.; West, M. D.; Buzdin, A.; Cantor, C. R.; Nikolsky, Y.; Borisov, N.; Irincheeva, I. et al. In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development Nat. Commun. 2016, 7, 13427 10.1038/ncomms13427
-
(2016)
Nat. Commun.
, vol.7
, pp. 13427
-
-
Ozerov, I.V.1
Lezhnina, K.V.2
Izumchenko, E.3
Artemov, A.V.4
Medintsev, S.5
Vanhaelen, Q.6
Aliper, A.7
Vijg, J.8
Osipov, A.N.9
Labat, I.10
West, M.D.11
Buzdin, A.12
Cantor, C.R.13
Nikolsky, Y.14
Borisov, N.15
Irincheeva, I.16
-
9
-
-
84954372459
-
Deep Learning in Drug Discovery
-
Gawehn, E.; Hiss, J. A.; Schneider, G. Deep Learning in Drug Discovery Mol. Inf. 2016, 35 (1) 3-14 10.1002/minf.201501008
-
(2016)
Mol. Inf.
, vol.35
, Issue.1
, pp. 3-14
-
-
Gawehn, E.1
Hiss, J.A.2
Schneider, G.3
-
10
-
-
84979019529
-
Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data
-
Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data Mol. Pharmaceutics 2016, 13 (7) 2524-2530 10.1021/acs.molpharmaceut.6b00248
-
(2016)
Mol. Pharmaceutics
, vol.13
, Issue.7
, pp. 2524-2530
-
-
Aliper, A.1
Plis, S.2
Artemov, A.3
Ulloa, A.4
Mamoshina, P.5
Zhavoronkov, A.6
-
11
-
-
85028824119
-
Integrated deep learned transcriptomic and structure-based predictor of clinical trials outcomes
-
Artemov, A. V.; Putin, E.; Vanhaelen, Q.; Aliper, A.; Ozerov; Zhavoronkov, A. Integrated deep learned transcriptomic and structure-based predictor of clinical trials outcomes bioRxiv 2016, 10.1101/095653
-
(2016)
BioRxiv
-
-
Artemov, A.V.1
Putin, E.2
Vanhaelen, Q.3
Aliper, A.4
Ozerov5
Zhavoronkov, A.6
-
12
-
-
85012890514
-
The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology
-
Kadurin, A.; Aliper, A.; Kazennov, A.; Mamoshina, P.; Vanhaelen, Q.; Khrabrov, K.; Zhavoronkov, A. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology Oncotarget 2017, 8 (7) 10883-10890 10.18632/oncotarget.14073
-
(2017)
Oncotarget
, vol.8
, Issue.7
, pp. 10883-10890
-
-
Kadurin, A.1
Aliper, A.2
Kazennov, A.3
Mamoshina, P.4
Vanhaelen, Q.5
Khrabrov, K.6
Zhavoronkov, A.7
-
13
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E.; Osindero, S.; Teh, Y. W. A fast learning algorithm for deep belief nets Neural computation 2006, 18 (7) 1527-1554 10.1162/neco.2006.18.7.1527
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
14
-
-
84862286946
-
Deep Boltzmann Machines
-
Salakhutdinov, R.; Hinton, G. Deep Boltzmann Machines PMLR 2009, 5, 448-455
-
(2009)
PMLR
, vol.5
, pp. 448-455
-
-
Salakhutdinov, R.1
Hinton, G.2
-
15
-
-
84928170467
-
Learning Deep Generative Models
-
Salakhutdinov, R. Learning Deep Generative Models Annu. Rev. Stat. Its Appl. 2015, 2, 361-385 10.1146/annurev-statistics-010814-020120
-
(2015)
Annu. Rev. Stat. Its Appl.
, vol.2
, pp. 361-385
-
-
Salakhutdinov, R.1
-
16
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting J. Mach. Learn. Res. 2014, 15, 1929-1958
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
17
-
-
84976894417
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift PMLR 2015, 37, 448-456
-
(2015)
PMLR
, vol.37
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
18
-
-
84941620184
-
Adam: A method for stochastic optimization
-
Kingma, D. P.; Ba, J. L. Adam: A method for stochastic optimization arXiv 2014, 1412.6980
-
(2014)
ArXiv
, pp. 14126980
-
-
Kingma, D.P.1
Ba, J.L.2
-
19
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization J. Mach. Learn. Res. 2011, 12, 2121-2159
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
20
-
-
85030222334
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks arXiv 2015, 1511.06434
-
(2015)
ArXiv
, pp. 151106434
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
21
-
-
85028892977
-
One-shot generalization in deep generative models
-
Rezende, D. J.; Mohamed, S.; Danihelka, I.; Gregor, K.; Wierstra, D. One-shot generalization in deep generative models arXiv 2016, 1603.05106
-
(2016)
ArXiv
, pp. 160305106
-
-
Rezende, D.J.1
Mohamed, S.2
Danihelka, I.3
Gregor, K.4
Wierstra, D.5
-
22
-
-
84919810317
-
Auto-encoding variational Bayes
-
Kingma, D. P.; Welling, M. Auto-encoding variational Bayes arXiv 2013, 1312.6114
-
(2013)
ArXiv
, pp. 13126114
-
-
Kingma, D.P.1
Welling, M.2
-
23
-
-
84990070233
-
Tutorial on variational autoencoders
-
Doersch, C. Tutorial on variational autoencoders arXiv 2016, 1606.05908
-
(2016)
ArXiv
, pp. 160605908
-
-
Doersch, C.1
-
24
-
-
84919908080
-
Stochastic backpropagation and approximate inference in deep generative models
-
Rezende, D. J.; Mohamed, S.; Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models arXiv 2014, 1401.4082
-
(2014)
ArXiv
, pp. 14014082
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
25
-
-
84937849144
-
Generative adversarial nets
-
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets Adv. Neural Inf. Process. Syst. 2014, 2672-2680
-
(2014)
Adv. Neural Inf. Process. Syst.
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
26
-
-
85018875486
-
Improved techniques for training GANs
-
Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training GANs Adv. Neural Inf Process. Syst. 2016, 2226-2234
-
(2016)
Adv. Neural Inf Process. Syst.
, pp. 2226-2234
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
27
-
-
84987948522
-
Adversarial autoencoders
-
Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial autoencoders arXiv 2015, 1511.05644
-
(2015)
ArXiv
, pp. 151105644
-
-
Makhzani, A.1
Shlens, J.2
Jaitly, N.3
Goodfellow, I.4
Frey, B.5
-
28
-
-
84979586933
-
PubChem Substance and Compound databases
-
Kim, S.; Thiessen, P. A.; Bolton, E. E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B. A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S. H. PubChem Substance and Compound databases Nucleic Acids Res. 2016, 44 (D1) D1202-1213 10.1093/nar/gkv951
-
(2016)
Nucleic Acids Res.
, vol.44
, Issue.D1
, pp. D1202-1213
-
-
Kim, S.1
Thiessen, P.A.2
Bolton, E.E.3
Chen, J.4
Fu, G.5
Gindulyte, A.6
Han, L.7
He, J.8
He, S.9
Shoemaker, B.A.10
Wang, J.11
Yu, B.12
Zhang, J.13
Bryant, S.H.14
-
29
-
-
2942704243
-
ESOL: Estimating aqueous solubility directly from molecular structure
-
Delaney, J. S. ESOL: estimating aqueous solubility directly from molecular structure Journal of chemical information and computer sciences 2004, 44 (3) 1000-1005 10.1021/ci034243x
-
(2004)
Journal of Chemical Information and Computer Sciences
, vol.44
, Issue.3
, pp. 1000-1005
-
-
Delaney, J.S.1
-
30
-
-
84874752995
-
Drug solubility: Importance and enhancement techniques
-
Savjani, K. T.; Gajjar, A. K.; Savjani, J. K. Drug solubility: importance and enhancement techniques ISRN Pharm. 2012, 2012, 195727 10.5402/2012/195727
-
(2012)
ISRN Pharm.
, vol.2012
, pp. 195727
-
-
Savjani, K.T.1
Gajjar, A.K.2
Savjani, J.K.3
-
31
-
-
85028836838
-
NIPS 2016 Tutorial: Generative Adversarial Networks
-
Goodfellow, I. NIPS 2016 Tutorial: Generative Adversarial Networks arXiv 2016, 1701.00160
-
(2016)
ArXiv
, pp. 170100160
-
-
Goodfellow, I.1
|