-
1
-
-
79960587660
-
Development of EBP-Artificial neural network expert system for rolling element bearing fault diagnosis
-
Jayaswal, P.; Verma, S.N.; Wadhwani, A.K. Development of EBP-Artificial neural network expert system for rolling element bearing fault diagnosis. J. Vib. Control 2011, 17, 1131–1148. [CrossRef].
-
(2011)
J. Vib. Control
, vol.17
, pp. 1131-1148
-
-
Jayaswal, P.1
Verma, S.N.2
Wadhwani, A.K.3
-
2
-
-
78049526939
-
Rolling element bearing fault detection in industrial environments based on a K-means clustering approach
-
Yiakopoulos, C.T.; Gryllias, K.C.; Antoniadis, I.A. Rolling element bearing fault detection in industrial environments based on a K-means clustering approach. Expert Syst. Appl. 2011, 38, 2888–2911. [CrossRef].
-
(2011)
Expert Syst. Appl
, vol.38
, pp. 2888-2911
-
-
Yiakopoulos, C.T.1
Gryllias, K.C.2
Antoniadis, I.A.3
-
3
-
-
84941884955
-
A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree
-
Li, Y.; Xu, M.; Wei, Y.; Huang, W. A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree. Measurement 2016, 77, 80–94. [CrossRef].
-
(2016)
Measurement
, vol.77
, pp. 80-94
-
-
Li, Y.1
Xu, M.2
Wei, Y.3
Huang, W.4
-
4
-
-
84876248148
-
Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks
-
Prieto, M.D.; Cirrincione, G.; Espinosa, A.G.; Ortega, J.A.; Henao, H. Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks. IEEE Trans. Ind. Electron. 2013, 60, 3398–3407. [CrossRef].
-
(2013)
IEEE Trans. Ind. Electron
, vol.60
, pp. 3398-3407
-
-
Prieto, M.D.1
Cirrincione, G.2
Espinosa, A.G.3
Ortega, J.A.4
Henao, H.5
-
5
-
-
84861558493
-
An intelligent diagnosis method for rotating machinery using least squares mapping and a fuzzy neural network
-
Li, K.; Chen, P.; Wang, S. An intelligent diagnosis method for rotating machinery using least squares mapping and a fuzzy neural network. Sensors 2012, 12, 5919–5939. [CrossRef] [PubMed].
-
(2012)
Sensors
, vol.12
, pp. 5919-5939
-
-
Li, K.1
Chen, P.2
Wang, S.3
-
6
-
-
84940174438
-
Bearing fault diagnosis based on statistical locally linear embedding
-
Wang, X.; Zheng, Y.; Zhao, Z.; Wang, J. Bearing fault diagnosis based on statistical locally linear embedding. Sensors 2015, 15, 16225–16247. [CrossRef] [PubMed].
-
(2015)
Sensors
, vol.15
, pp. 16225-16247
-
-
Wang, X.1
Zheng, Y.2
Zhao, Z.3
Wang, J.4
-
7
-
-
84894241338
-
Double Fault Detection of Cone-Shaped Redundant IMUs Using Wavelet Transformation and EPSA
-
Lee, W.; Park, C.G. Double Fault Detection of Cone-Shaped Redundant IMUs Using Wavelet Transformation and EPSA. Sensors 2014, 14, 3428–3444. [CrossRef] [PubMed].
-
(2014)
Sensors
, vol.14
, pp. 3428-3444
-
-
Lee, W.1
Park, C.G.2
-
8
-
-
34249751601
-
Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform
-
Rai, V.K.; Mohanty, A.R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform. Mech. Syst. Signal Process. 2007, 21, 2607–2615. [CrossRef].
-
(2007)
Mech. Syst. Signal Process
, vol.21
, pp. 2607-2615
-
-
Rai, V.K.1
Mohanty, A.R.2
-
9
-
-
0037106519
-
Multivariate process monitoring and fault diagnosis by multi-scale PCA
-
Misra, M.; Yue, H.H.; Qin, S.J.; Ling, C. Multivariate process monitoring and fault diagnosis by multi-scale PCA. Comput. Chem. Eng. 2002, 26, 1281–1293. [CrossRef].
-
(2002)
Comput. Chem. Eng
, vol.26
, pp. 1281-1293
-
-
Misra, M.1
Yue, H.H.2
Qin, S.J.3
Ling, C.4
-
10
-
-
33845623677
-
Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors
-
Widodo, A.; Yang, B.S. Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors. Expert Syst. Appl. 2007, 33, 241–250. [CrossRef].
-
(2007)
Expert Syst. Appl
, vol.33
, pp. 241-250
-
-
Widodo, A.1
Yang, B.S.2
-
11
-
-
84875368599
-
Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN
-
Pandya, D.H.; Upadhyay, S.H.; Harsha, S.P. Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN. Expert Syst. Appl. 2013, 40, 4137–4145. [CrossRef].
-
(2013)
Expert Syst. Appl
, vol.40
, pp. 4137-4145
-
-
Pandya, D.H.1
Upadhyay, S.H.2
Harsha, S.P.3
-
12
-
-
79953710532
-
Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis
-
Hajnayeb, A.; Ghasemloonia, A.; Khadem, S.E.; Moradi, M.H. Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis. Expert Syst. Appl. 2011, 38, 10205–10209. [CrossRef].
-
(2011)
Expert Syst. Appl
, vol.38
, pp. 10205-10209
-
-
Hajnayeb, A.1
Ghasemloonia, A.2
Khadem, S.E.3
Moradi, M.H.4
-
13
-
-
0034297837
-
Neural-network-based motor rolling bearing fault diagnosis
-
Li, B.; Chow, M.Y.; Tipsuwan, Y.; Hung, J.C. Neural-network-based motor rolling bearing fault diagnosis. IEEE Trans. Ind. Electron. 2000, 47, 1060–1069. [CrossRef].
-
(2000)
IEEE Trans. Ind. Electron
, vol.47
, pp. 1060-1069
-
-
Li, B.1
Chow, M.Y.2
Tipsuwan, Y.3
Hung, J.C.4
-
14
-
-
84928681088
-
An SVM-based solution for fault detection in wind turbines
-
Santos, P.; Villa, L.F.; Reñones, A.; Bustillo, A.; Maudes, J. An SVM-based solution for fault detection in wind turbines. Sensors 2015, 15, 5627–5648. [CrossRef] [PubMed].
-
(2015)
Sensors
, vol.15
, pp. 5627-5648
-
-
Santos, P.1
Villa, L.F.2
Reñones, A.3
Bustillo, A.4
Maudes, J.5
-
15
-
-
79955626219
-
Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker
-
Huang, J.; Hu, X.; Yang, F. Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker. Measurement 2011, 44, 1018–1027. [CrossRef].
-
(2011)
Measurement
, vol.44
, pp. 1018-1027
-
-
Huang, J.1
Hu, X.2
Yang, F.3
-
16
-
-
79956155898
-
Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs)
-
Konar, P.; Chattopadhyay, P. Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs). Appl. Soft Comput. 2011, 11, 4203–4211. [CrossRef].
-
(2011)
Appl. Soft Comput
, vol.11
, pp. 4203-4211
-
-
Konar, P.1
Chattopadhyay, P.2
-
17
-
-
84919933755
-
Vibration spectrum imaging: A novel bearing fault classification approach
-
Amar, M.; Gondal, I.; Wilson, C. Vibration spectrum imaging: A novel bearing fault classification approach. IEEE Trans. Ind. Electron. 2015, 62, 494–502. [CrossRef].
-
(2015)
IEEE Trans. Ind. Electron
, vol.62
, pp. 494-502
-
-
Amar, M.1
Gondal, I.2
Wilson, C.3
-
18
-
-
77349127319
-
Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN)
-
Saravanan, N.; Ramachandran, K.I. Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN). Expert Syst. Appl. 2010, 37, 4168–4181. [CrossRef].
-
(2010)
Expert Syst. Appl
, vol.37
, pp. 4168-4181
-
-
Saravanan, N.1
Ramachandran, K.I.2
-
19
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
MIT Press: Cambridge, MA, USA
-
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2012; pp. 1097–1105.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
20
-
-
84867605836
-
Penn, G. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition
-
Kyoto, Japan, 25–30 March
-
Abdel-Hamid, O.; Mohamed, A.R.; Jiang, H.; Penn, G. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 4277–4280.
-
(2012)
Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, pp. 4277-4280
-
-
Abdel-Hamid, O.1
Mohamed, A.R.2
Jiang, H.3
-
22
-
-
84973470244
-
Convolutional Neural Network Based Fault Detection for Rotating Machinery
-
Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; van de Walle, R.; van Hoecke, S. Convolutional Neural Network Based Fault Detection for Rotating Machinery. J. Sound Vib. 2016, 377, 331–345. [CrossRef].
-
(2016)
J. Sound Vib
, vol.377
, pp. 331-345
-
-
Janssens, O.1
Slavkovikj, V.2
Vervisch, B.3
Stockman, K.4
Loccufier, M.5
Verstockt, S.6
Van De Walle, R.7
Van Hoecke, S.8
-
23
-
-
84979085360
-
Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
-
Guo, X.; Chen, L.; Shen, C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement 2016, 93, 490–502. [CrossRef].
-
(2016)
Measurement
, vol.93
, pp. 490-502
-
-
Guo, X.1
Chen, L.2
Shen, C.3
-
24
-
-
84994474581
-
Real-time motor fault detection by 1D convolutional neural networks
-
Ince, T.; Kiranyaz, S.; Eren, L.; Askar, M.; Gabbouj, M. Real-time motor fault detection by 1D convolutional neural networks. IEEE Trans. Ind. Electron. 2016, 63, 7067–7075. [CrossRef].
-
(2016)
IEEE Trans. Ind. Electron
, vol.63
, pp. 7067-7075
-
-
Ince, T.1
Kiranyaz, S.2
Eren, L.3
Askar, M.4
Gabbouj, M.5
-
25
-
-
84997079451
-
Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
-
Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 2017, 388, 154–170. [CrossRef].
-
(2017)
J. Sound Vib
, vol.388
, pp. 154-170
-
-
Abdeljaber, O.1
Avci, O.2
Kiranyaz, S.3
Gabbouj, M.4
Inman, D.J.5
-
26
-
-
85013855101
-
Rolling Element Bearings Fault Intelligent Diagnosis Based on Convolutional Neural Networks Using Raw Sensing Signal
-
Kaohsiung, Taiwan, 21–23 November, Springer: Berlin/Heidelberg, Germany, 2017
-
Zhang, W.; Peng, G.; Li, C. Rolling Element Bearings Fault Intelligent Diagnosis Based on Convolutional Neural Networks Using Raw Sensing Signal. In Advances in Intelligent Information Hiding and Multimedia Signal Processing: Proceeding of the Twelfth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kaohsiung, Taiwan, 21–23 November 2016; Volume 2, pp. 77–84; Springer: Berlin/Heidelberg, Germany, 2017.
-
(2016)
Advances in Intelligent Information Hiding and Multimedia Signal Processing: Proceeding of the Twelfth International Conference on Intelligent Information Hiding and Multimedia Signal Processing
, vol.2
, pp. 77-84
-
-
Zhang, W.1
Peng, G.2
Li, C.3
-
27
-
-
84963934455
-
An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data
-
Lei, Y.; Jia, F.; Lin, J.; Xing, S.; Ding, S.X. An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data. IEEE Trans. Ind. Electron. 2016, 63, 3137–3147. [CrossRef].
-
(2016)
IEEE Trans. Ind. Electron
, vol.63
, pp. 3137-3147
-
-
Lei, Y.1
Jia, F.2
Lin, J.3
Xing, S.4
Ding, S.X.5
-
30
-
-
85013750144
-
-
arXiv 2016
-
Li, Y.; Wang, N.; Shi, J.; Liu, J.; Hou, X. Revisiting Batch Normalization for Practical Domain Adaptation. arXiv 2016.
-
Revisiting Batch Normalization for Practical Domain Adaptation
-
-
Li, Y.1
Wang, N.2
Shi, J.3
Liu, J.4
Hou, X.5
-
31
-
-
84933584545
-
Kingsbury, B. Data augmentation for deep convolutional neural network acoustic modeling. In Proceedings of the
-
Cui, X.; Goel, V.; Kingsbury, B. Data augmentation for deep convolutional neural network acoustic modeling. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 19–24 April 2015; pp. 4545–4549.
-
(2015)
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 19–24 April
, vol.2015
, pp. 4545-4549
-
-
Cui, X.1
Goel, V.2
-
32
-
-
2942525326
-
Bearing fault diagnosis based on wavelet transform and fuzzy inference
-
Lou, X.; Loparo, K.A. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech. Syst. Signal Process. 2004, 18, 1077–1095. [CrossRef].
-
(2004)
Mech. Syst. Signal Process
, vol.18
, pp. 1077-1095
-
-
Lou, X.1
Loparo, K.A.2
-
33
-
-
84955693855
-
Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
Jia, F.; Lei, Y.; Lin, J.; Zhou, X.; Lu, N. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 2016, 72, 303–315. [CrossRef].
-
(2016)
Mech. Syst. Signal Process
, vol.72
, pp. 303-315
-
-
Jia, F.1
Lei, Y.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
34
-
-
85013814846
-
-
accessed on 21 February
-
TensorFlow. Available online: www.tensorflow.org (accessed on 21 February 2017).
-
(2017)
-
-
-
36
-
-
79957498753
-
Angular resampling for vibration analysis in wind turbines under non-linear speed fluctuation
-
Villa, L.F.; Reñones, A.; Perán, J.R.; de Miguel, L.J. Angular resampling for vibration analysis in wind turbines under non-linear speed fluctuation. Mech. Syst. Signal Process. 2011, 25, 2157–2168. [CrossRef].
-
(2011)
Mech. Syst. Signal Process
, vol.25
, pp. 2157-2168
-
-
Villa, L.F.1
Reñones, A.2
Perán, J.R.3
De Miguel, L.J.4
-
37
-
-
85041539421
-
Identifying maximum imbalance in datasets for fault diagnosis of gearboxes
-
Santos, P.; Maudes, J.; Bustillo, A. Identifying maximum imbalance in datasets for fault diagnosis of gearboxes. J. Intell. Manuf. 2015. [CrossRef].
-
(2015)
J. Intell. Manuf
-
-
Santos, P.1
Maudes, J.2
Bustillo, A.3
-
38
-
-
84944735469
-
-
MIT Press: Cambridge, MA, USA
-
Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
-
(2016)
Deep Learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
|