메뉴 건너뛰기




Volumn 17, Issue 2, 2017, Pages

A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals

Author keywords

Anti noise; Convolutional neural networks; Domain adaptation; Intelligent fault diagnosis

Indexed keywords

CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; FAILURE ANALYSIS; MAPPING; MULTILAYERS; NEURAL NETWORKS;

EID: 85013858722     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s17020425     Document Type: Article
Times cited : (1355)

References (38)
  • 1
    • 79960587660 scopus 로고    scopus 로고
    • Development of EBP-Artificial neural network expert system for rolling element bearing fault diagnosis
    • Jayaswal, P.; Verma, S.N.; Wadhwani, A.K. Development of EBP-Artificial neural network expert system for rolling element bearing fault diagnosis. J. Vib. Control 2011, 17, 1131–1148. [CrossRef].
    • (2011) J. Vib. Control , vol.17 , pp. 1131-1148
    • Jayaswal, P.1    Verma, S.N.2    Wadhwani, A.K.3
  • 2
    • 78049526939 scopus 로고    scopus 로고
    • Rolling element bearing fault detection in industrial environments based on a K-means clustering approach
    • Yiakopoulos, C.T.; Gryllias, K.C.; Antoniadis, I.A. Rolling element bearing fault detection in industrial environments based on a K-means clustering approach. Expert Syst. Appl. 2011, 38, 2888–2911. [CrossRef].
    • (2011) Expert Syst. Appl , vol.38 , pp. 2888-2911
    • Yiakopoulos, C.T.1    Gryllias, K.C.2    Antoniadis, I.A.3
  • 3
    • 84941884955 scopus 로고    scopus 로고
    • A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree
    • Li, Y.; Xu, M.; Wei, Y.; Huang, W. A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree. Measurement 2016, 77, 80–94. [CrossRef].
    • (2016) Measurement , vol.77 , pp. 80-94
    • Li, Y.1    Xu, M.2    Wei, Y.3    Huang, W.4
  • 4
    • 84876248148 scopus 로고    scopus 로고
    • Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks
    • Prieto, M.D.; Cirrincione, G.; Espinosa, A.G.; Ortega, J.A.; Henao, H. Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks. IEEE Trans. Ind. Electron. 2013, 60, 3398–3407. [CrossRef].
    • (2013) IEEE Trans. Ind. Electron , vol.60 , pp. 3398-3407
    • Prieto, M.D.1    Cirrincione, G.2    Espinosa, A.G.3    Ortega, J.A.4    Henao, H.5
  • 5
    • 84861558493 scopus 로고    scopus 로고
    • An intelligent diagnosis method for rotating machinery using least squares mapping and a fuzzy neural network
    • Li, K.; Chen, P.; Wang, S. An intelligent diagnosis method for rotating machinery using least squares mapping and a fuzzy neural network. Sensors 2012, 12, 5919–5939. [CrossRef] [PubMed].
    • (2012) Sensors , vol.12 , pp. 5919-5939
    • Li, K.1    Chen, P.2    Wang, S.3
  • 6
    • 84940174438 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on statistical locally linear embedding
    • Wang, X.; Zheng, Y.; Zhao, Z.; Wang, J. Bearing fault diagnosis based on statistical locally linear embedding. Sensors 2015, 15, 16225–16247. [CrossRef] [PubMed].
    • (2015) Sensors , vol.15 , pp. 16225-16247
    • Wang, X.1    Zheng, Y.2    Zhao, Z.3    Wang, J.4
  • 7
    • 84894241338 scopus 로고    scopus 로고
    • Double Fault Detection of Cone-Shaped Redundant IMUs Using Wavelet Transformation and EPSA
    • Lee, W.; Park, C.G. Double Fault Detection of Cone-Shaped Redundant IMUs Using Wavelet Transformation and EPSA. Sensors 2014, 14, 3428–3444. [CrossRef] [PubMed].
    • (2014) Sensors , vol.14 , pp. 3428-3444
    • Lee, W.1    Park, C.G.2
  • 8
    • 34249751601 scopus 로고    scopus 로고
    • Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform
    • Rai, V.K.; Mohanty, A.R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform. Mech. Syst. Signal Process. 2007, 21, 2607–2615. [CrossRef].
    • (2007) Mech. Syst. Signal Process , vol.21 , pp. 2607-2615
    • Rai, V.K.1    Mohanty, A.R.2
  • 9
    • 0037106519 scopus 로고    scopus 로고
    • Multivariate process monitoring and fault diagnosis by multi-scale PCA
    • Misra, M.; Yue, H.H.; Qin, S.J.; Ling, C. Multivariate process monitoring and fault diagnosis by multi-scale PCA. Comput. Chem. Eng. 2002, 26, 1281–1293. [CrossRef].
    • (2002) Comput. Chem. Eng , vol.26 , pp. 1281-1293
    • Misra, M.1    Yue, H.H.2    Qin, S.J.3    Ling, C.4
  • 10
    • 33845623677 scopus 로고    scopus 로고
    • Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors
    • Widodo, A.; Yang, B.S. Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors. Expert Syst. Appl. 2007, 33, 241–250. [CrossRef].
    • (2007) Expert Syst. Appl , vol.33 , pp. 241-250
    • Widodo, A.1    Yang, B.S.2
  • 11
    • 84875368599 scopus 로고    scopus 로고
    • Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN
    • Pandya, D.H.; Upadhyay, S.H.; Harsha, S.P. Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN. Expert Syst. Appl. 2013, 40, 4137–4145. [CrossRef].
    • (2013) Expert Syst. Appl , vol.40 , pp. 4137-4145
    • Pandya, D.H.1    Upadhyay, S.H.2    Harsha, S.P.3
  • 12
    • 79953710532 scopus 로고    scopus 로고
    • Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis
    • Hajnayeb, A.; Ghasemloonia, A.; Khadem, S.E.; Moradi, M.H. Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis. Expert Syst. Appl. 2011, 38, 10205–10209. [CrossRef].
    • (2011) Expert Syst. Appl , vol.38 , pp. 10205-10209
    • Hajnayeb, A.1    Ghasemloonia, A.2    Khadem, S.E.3    Moradi, M.H.4
  • 13
    • 0034297837 scopus 로고    scopus 로고
    • Neural-network-based motor rolling bearing fault diagnosis
    • Li, B.; Chow, M.Y.; Tipsuwan, Y.; Hung, J.C. Neural-network-based motor rolling bearing fault diagnosis. IEEE Trans. Ind. Electron. 2000, 47, 1060–1069. [CrossRef].
    • (2000) IEEE Trans. Ind. Electron , vol.47 , pp. 1060-1069
    • Li, B.1    Chow, M.Y.2    Tipsuwan, Y.3    Hung, J.C.4
  • 14
    • 84928681088 scopus 로고    scopus 로고
    • An SVM-based solution for fault detection in wind turbines
    • Santos, P.; Villa, L.F.; Reñones, A.; Bustillo, A.; Maudes, J. An SVM-based solution for fault detection in wind turbines. Sensors 2015, 15, 5627–5648. [CrossRef] [PubMed].
    • (2015) Sensors , vol.15 , pp. 5627-5648
    • Santos, P.1    Villa, L.F.2    Reñones, A.3    Bustillo, A.4    Maudes, J.5
  • 15
    • 79955626219 scopus 로고    scopus 로고
    • Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker
    • Huang, J.; Hu, X.; Yang, F. Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker. Measurement 2011, 44, 1018–1027. [CrossRef].
    • (2011) Measurement , vol.44 , pp. 1018-1027
    • Huang, J.1    Hu, X.2    Yang, F.3
  • 16
    • 79956155898 scopus 로고    scopus 로고
    • Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs)
    • Konar, P.; Chattopadhyay, P. Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs). Appl. Soft Comput. 2011, 11, 4203–4211. [CrossRef].
    • (2011) Appl. Soft Comput , vol.11 , pp. 4203-4211
    • Konar, P.1    Chattopadhyay, P.2
  • 17
    • 84919933755 scopus 로고    scopus 로고
    • Vibration spectrum imaging: A novel bearing fault classification approach
    • Amar, M.; Gondal, I.; Wilson, C. Vibration spectrum imaging: A novel bearing fault classification approach. IEEE Trans. Ind. Electron. 2015, 62, 494–502. [CrossRef].
    • (2015) IEEE Trans. Ind. Electron , vol.62 , pp. 494-502
    • Amar, M.1    Gondal, I.2    Wilson, C.3
  • 18
    • 77349127319 scopus 로고    scopus 로고
    • Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN)
    • Saravanan, N.; Ramachandran, K.I. Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN). Expert Syst. Appl. 2010, 37, 4168–4181. [CrossRef].
    • (2010) Expert Syst. Appl , vol.37 , pp. 4168-4181
    • Saravanan, N.1    Ramachandran, K.I.2
  • 23
    • 84979085360 scopus 로고    scopus 로고
    • Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
    • Guo, X.; Chen, L.; Shen, C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement 2016, 93, 490–502. [CrossRef].
    • (2016) Measurement , vol.93 , pp. 490-502
    • Guo, X.1    Chen, L.2    Shen, C.3
  • 24
    • 84994474581 scopus 로고    scopus 로고
    • Real-time motor fault detection by 1D convolutional neural networks
    • Ince, T.; Kiranyaz, S.; Eren, L.; Askar, M.; Gabbouj, M. Real-time motor fault detection by 1D convolutional neural networks. IEEE Trans. Ind. Electron. 2016, 63, 7067–7075. [CrossRef].
    • (2016) IEEE Trans. Ind. Electron , vol.63 , pp. 7067-7075
    • Ince, T.1    Kiranyaz, S.2    Eren, L.3    Askar, M.4    Gabbouj, M.5
  • 25
    • 84997079451 scopus 로고    scopus 로고
    • Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
    • Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 2017, 388, 154–170. [CrossRef].
    • (2017) J. Sound Vib , vol.388 , pp. 154-170
    • Abdeljaber, O.1    Avci, O.2    Kiranyaz, S.3    Gabbouj, M.4    Inman, D.J.5
  • 27
    • 84963934455 scopus 로고    scopus 로고
    • An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data
    • Lei, Y.; Jia, F.; Lin, J.; Xing, S.; Ding, S.X. An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data. IEEE Trans. Ind. Electron. 2016, 63, 3137–3147. [CrossRef].
    • (2016) IEEE Trans. Ind. Electron , vol.63 , pp. 3137-3147
    • Lei, Y.1    Jia, F.2    Lin, J.3    Xing, S.4    Ding, S.X.5
  • 32
    • 2942525326 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on wavelet transform and fuzzy inference
    • Lou, X.; Loparo, K.A. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech. Syst. Signal Process. 2004, 18, 1077–1095. [CrossRef].
    • (2004) Mech. Syst. Signal Process , vol.18 , pp. 1077-1095
    • Lou, X.1    Loparo, K.A.2
  • 33
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • Jia, F.; Lei, Y.; Lin, J.; Zhou, X.; Lu, N. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 2016, 72, 303–315. [CrossRef].
    • (2016) Mech. Syst. Signal Process , vol.72 , pp. 303-315
    • Jia, F.1    Lei, Y.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 34
    • 85013814846 scopus 로고    scopus 로고
    • accessed on 21 February
    • TensorFlow. Available online: www.tensorflow.org (accessed on 21 February 2017).
    • (2017)
  • 36
    • 79957498753 scopus 로고    scopus 로고
    • Angular resampling for vibration analysis in wind turbines under non-linear speed fluctuation
    • Villa, L.F.; Reñones, A.; Perán, J.R.; de Miguel, L.J. Angular resampling for vibration analysis in wind turbines under non-linear speed fluctuation. Mech. Syst. Signal Process. 2011, 25, 2157–2168. [CrossRef].
    • (2011) Mech. Syst. Signal Process , vol.25 , pp. 2157-2168
    • Villa, L.F.1    Reñones, A.2    Perán, J.R.3    De Miguel, L.J.4
  • 37
    • 85041539421 scopus 로고    scopus 로고
    • Identifying maximum imbalance in datasets for fault diagnosis of gearboxes
    • Santos, P.; Maudes, J.; Bustillo, A. Identifying maximum imbalance in datasets for fault diagnosis of gearboxes. J. Intell. Manuf. 2015. [CrossRef].
    • (2015) J. Intell. Manuf
    • Santos, P.1    Maudes, J.2    Bustillo, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.