-
1
-
-
82955247909
-
IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030
-
D. R. Whiting, L. Guariguata, C. Weil, and J. Shaw, "IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030," Diabetes Research and Clinical Practice, vol. 94, no. 3, pp. 311-321, 2011.
-
(2011)
Diabetes Research and Clinical Practice
, vol.94
, Issue.3
, pp. 311-321
-
-
Whiting, D.R.1
Guariguata, L.2
Weil, C.3
Shaw, J.4
-
2
-
-
84928754600
-
Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α
-
F. Liu, R. Song, Y. Feng et al., "Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α," Circulation, vol. 131, no. 9, pp. 795-804, 2015.
-
(2015)
Circulation
, vol.131
, Issue.9
, pp. 795-804
-
-
Liu, F.1
Song, R.2
Feng, Y.3
-
3
-
-
0034674022
-
Impact of diabetes on cardiac structure and function: The strong heart study
-
R. B. Devereux, M. J. Roman, M. Paranicas et al., "Impact of diabetes on cardiac structure and function: the strong heart study," Circulation, vol. 101, no. 19, pp. 2271-2276, 2000.
-
(2000)
Circulation
, vol.101
, Issue.19
, pp. 2271-2276
-
-
Devereux, R.B.1
Roman, M.J.2
Paranicas, M.3
-
4
-
-
0018764335
-
Diabetes and cardiovascular disease. The Framingham study
-
W. B. Kannel and D. L. McGee, "Diabetes and cardiovascular disease. The Framingham study," The Journal of the American Medical Association, vol. 241, no. 19, pp. 2035-2038, 1979.
-
(1979)
The Journal of the American Medical Association
, vol.241
, Issue.19
, pp. 2035-2038
-
-
Kannel, W.B.1
McGee, D.L.2
-
5
-
-
84863283393
-
Metabolic stressinduced activation of FoxO1 triggers diabetic cardiomyopathy in mice
-
P. K. Battiprolu, B. Hojayev, N. Jiang et al., "Metabolic stressinduced activation of FoxO1 triggers diabetic cardiomyopathy in mice," The Journal of Clinical Investigation, vol. 122, no. 3, pp. 1109-1118, 2012.
-
(2012)
The Journal of Clinical Investigation
, vol.122
, Issue.3
, pp. 1109-1118
-
-
Battiprolu, P.K.1
Hojayev, B.2
Jiang, N.3
-
6
-
-
84929398880
-
Diabetic cardiomyopathy: Catabolism driving metabolism
-
Z. V. Wang and J. A. Hill, "Diabetic cardiomyopathy: catabolism driving metabolism," Circulation, vol. 131, no. 9, pp. 771-773, 2015.
-
(2015)
Circulation
, vol.131
, Issue.9
, pp. 771-773
-
-
Wang, Z.V.1
Hill, J.A.2
-
7
-
-
84907546206
-
Inhibition of JNK phosphorylation by a novel curcumin analog prevents high glucoseinduced inflammation and apoptosis in cardiomyocytes and the development of diabetic cardiomyopathy
-
Y. Pan, Y. Wang, Y. Zhao et al., "Inhibition of JNK phosphorylation by a novel curcumin analog prevents high glucoseinduced inflammation and apoptosis in cardiomyocytes and the development of diabetic cardiomyopathy," Diabetes, vol. 63, no. 10, pp. 3497-3511, 2014.
-
(2014)
Diabetes
, vol.63
, Issue.10
, pp. 3497-3511
-
-
Pan, Y.1
Wang, Y.2
Zhao, Y.3
-
8
-
-
84930652768
-
Myocardial metabolism in diabetic cardiomyopathy: Potential therapeutic targets
-
M. M. Sung, S. M. Hamza, and J. R. Dyck, "Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets," Antioxidants & Redox Signaling, vol. 22, no. 17, pp. 1606-1630, 2015.
-
(2015)
Antioxidants & Redox Signaling
, vol.22
, Issue.17
, pp. 1606-1630
-
-
Sung, M.M.1
Hamza, S.M.2
Dyck, J.R.3
-
9
-
-
78149409465
-
Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease
-
J. Ren, L. Pulakat, A. Whaley-Connell, and J. R. Sowers, "Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease," Journal of Molecular Medicine, vol. 88, no. 10, pp. 993-1001, 2010.
-
(2010)
Journal of Molecular Medicine
, vol.88
, Issue.10
, pp. 993-1001
-
-
Ren, J.1
Pulakat, L.2
Whaley-Connell, A.3
Sowers, J.R.4
-
10
-
-
84930665631
-
The mitochondria in diabetic heart failure: From pathogenesis to therapeutic promise
-
J. D. Schilling, "The mitochondria in diabetic heart failure: from pathogenesis to therapeutic promise," Antioxidants & Redox Signaling, vol. 22, no. 17, pp. 1515-1526, 2015.
-
(2015)
Antioxidants & Redox Signaling
, vol.22
, Issue.17
, pp. 1515-1526
-
-
Schilling, J.D.1
-
11
-
-
85019738019
-
Sirt1 carboxyl-domain is an ATP-repressible domain that is transferrable to other proteins
-
H. Kang, S. Oka, D. Y. Lee et al., "Sirt1 carboxyl-domain is an ATP-repressible domain that is transferrable to other proteins," Nature Communications, vol. 8, article 15560, 2017.
-
(2017)
Nature Communications
, vol.8
-
-
Kang, H.1
Oka, S.2
Lee, D.Y.3
-
12
-
-
3943054839
-
The Sir2 family of protein deacetylases
-
G. Blander and L. Guarente, "The Sir2 family of protein deacetylases," Annual Review of Biochemistry, vol. 73, no. 1, pp. 417-435, 2004.
-
(2004)
Annual Review of Biochemistry
, vol.73
, Issue.1
, pp. 417-435
-
-
Blander, G.1
Guarente, L.2
-
13
-
-
77749254621
-
Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy
-
M. Sulaiman, M. J. Matta, N. R. Sunderesan, M. P. Gupta, M. Periasamy, and M. Gupta, "Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy," American Journal of Physiology-Heart and Circulatory Physiology, vol. 298, no. 3, pp. H833-H843, 2010.
-
(2010)
American Journal of Physiology-Heart and Circulatory Physiology
, vol.298
, Issue.3
, pp. H833-H843
-
-
Sulaiman, M.1
Matta, M.J.2
Sunderesan, N.R.3
Gupta, M.P.4
Periasamy, M.5
Gupta, M.6
-
14
-
-
84942193330
-
SIRT1 suppresses cardiomyocyte apoptosis in diabetic cardiomyopathy: An insight into endoplasmic reticulum stress response mechanism
-
R. Guo, W. Liu, B. Liu, B. Zhang, W. Li, and Y. Xu, "SIRT1 suppresses cardiomyocyte apoptosis in diabetic cardiomyopathy: an insight into endoplasmic reticulum stress response mechanism," International Journal of Cardiology, vol. 191, pp. 36-45, 2015.
-
(2015)
International Journal of Cardiology
, vol.191
, pp. 36-45
-
-
Guo, R.1
Liu, W.2
Liu, B.3
Zhang, B.4
Li, W.5
Xu, Y.6
-
15
-
-
0141719702
-
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
K. T. Howitz, K. J. Bitterman, H. Y. Cohen et al., "Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan," Nature, vol. 425, no. 6954, pp. 191-196, 2003.
-
(2003)
Nature
, vol.425
, Issue.6954
, pp. 191-196
-
-
Howitz, K.T.1
Bitterman, K.J.2
Cohen, H.Y.3
-
16
-
-
0031561513
-
Cancer chemopreventive activity of resveratrol, a natural product derived from grapes
-
M. Jang, L. Cai, G. O. Udeani et al., "Cancer chemopreventive activity of resveratrol, a natural product derived from grapes," Science, vol. 275, no. 5297, pp. 218-220, 1997.
-
(1997)
Science
, vol.275
, Issue.5297
, pp. 218-220
-
-
Jang, M.1
Cai, L.2
Udeani, G.O.3
-
17
-
-
84965151035
-
Resveratrol and cardiovascular diseases
-
D. Bonnefont-Rousselot, "Resveratrol and cardiovascular diseases," Nutrients, vol. 8, no. 5, 2016.
-
(2016)
Nutrients
, vol.8
, Issue.5
-
-
Bonnefont-Rousselot, D.1
-
18
-
-
34250756115
-
Resveratrol: A therapeutic promise for cardiovascular diseases
-
S. Das and D. K. Das, "Resveratrol: a therapeutic promise for cardiovascular diseases," Recent Patents on Cardiovascular Drug Discovery, vol. 2, no. 2, pp. 133-138, 2007.
-
(2007)
Recent Patents On Cardiovascular Drug Discovery
, vol.2
, Issue.2
, pp. 133-138
-
-
Das, S.1
Das, D.K.2
-
19
-
-
84861852370
-
Are sirtuins viable targets for improving healthspan and lifespan?
-
J. A. Baur, Z. Ungvari, R. K. Minor, D. G. Le Couteur, and R. de Cabo, "Are sirtuins viable targets for improving healthspan and lifespan?" Nature Reviews Drug Discovery, vol. 11, no. 6, pp. 443-461, 2012.
-
(2012)
Nature Reviews Drug Discovery
, vol.11
, Issue.6
, pp. 443-461
-
-
Baur, J.A.1
Ungvari, Z.2
Minor, R.K.3
Le Couteur, D.G.4
De Cabo, R.5
-
20
-
-
85019166009
-
Resveratrol protects against pulmonary arterial hypertension in rats via activation of silent information regulator 1
-
L. Yu, Y. Tu, X. Jia et al., "Resveratrol protects against pulmonary arterial hypertension in rats via activation of silent information regulator 1," Cellular Physiology and Biochemistry, vol. 42, no. 1, pp. 55-67, 2017.
-
(2017)
Cellular Physiology and Biochemistry
, vol.42
, Issue.1
, pp. 55-67
-
-
Yu, L.1
Tu, Y.2
Jia, X.3
-
21
-
-
84870506099
-
Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria
-
B. Liu, S. Ghosh, X. Yang et al., "Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria," Cell Metabolism, vol. 16, no. 6, pp. 738-750, 2012.
-
(2012)
Cell Metabolism
, vol.16
, Issue.6
, pp. 738-750
-
-
Liu, B.1
Ghosh, S.2
Yang, X.3
-
22
-
-
84929149035
-
Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network
-
C. D. Côté, B. A. Rasmussen, F. A. Duca et al., "Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network," Nature Medicine, vol. 21, no. 5, pp. 498-505, 2015.
-
(2015)
Nature Medicine
, vol.21
, Issue.5
, pp. 498-505
-
-
Côté, C.D.1
Rasmussen, B.A.2
Duca, F.A.3
-
23
-
-
84888870716
-
Protective effects of lowfrequency magnetic fields on cardiomyocytes from ischemia reperfusion injury via ros and NO/ONOO
-
S. Ma, Z. Zhang, F. Yi et al., "Protective effects of lowfrequency magnetic fields on cardiomyocytes from ischemia reperfusion injury via ros and NO/ONOO-," Oxidative Medicine and Cellular Longevity, vol. 2013, Article ID 529173, 9 pages, 2013.
-
(2013)
Oxidative Medicine and Cellular Longevity
, vol.2013
-
-
Ma, S.1
Zhang, Z.2
Yi, F.3
-
24
-
-
84874931230
-
Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism
-
D. Wang, P. Luo, Y. Wang et al., "Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism," Diabetes, vol. 62, no. 5, pp. 1697-1708, 2013.
-
(2013)
Diabetes
, vol.62
, Issue.5
, pp. 1697-1708
-
-
Wang, D.1
Luo, P.2
Wang, Y.3
-
25
-
-
0016283974
-
Diabetic cardiomyopathy
-
R. I. Hamby, S. Zoneraich, and L. Sherman, "Diabetic cardiomyopathy," The Journal of the American Medical Association, vol. 229, no. 13, pp. 1749-1754, 1974.
-
(1974)
The Journal of the American Medical Association
, vol.229
, Issue.13
, pp. 1749-1754
-
-
Hamby, R.I.1
Zoneraich, S.2
Sherman, L.3
-
26
-
-
85018394748
-
Mortality and cardiovascular disease in type 1 and type 2 diabetes
-
A. Rawshani, A. Rawshani, S. Franzén et al., "Mortality and cardiovascular disease in type 1 and type 2 diabetes," The New England Journal of Medicine, vol. 376, no. 15, pp. 1407-1418, 2017.
-
(2017)
The New England Journal of Medicine
, vol.376
, Issue.15
, pp. 1407-1418
-
-
Rawshani, A.1
Rawshani, A.2
Franzén, S.3
-
27
-
-
84855161991
-
Diagnosis and classification of diabetes mellitus
-
C. D. Malchoff, "Diagnosis and classification of diabetes mellitus," Diabetes Care, vol. 35, Supplement 1, pp. S64-S71, 2012.
-
(2012)
Diabetes Care
, vol.35
, pp. S64-S71
-
-
Malchoff, C.D.1
-
28
-
-
84948129560
-
Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation in the diabetic heart
-
E. J. Vazquez, J. M. Berthiaume, V. Kamath et al., "Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation in the diabetic heart," Cardiovascular Research, vol. 107, no. 4, pp. 453-465, 2015.
-
(2015)
Cardiovascular Research
, vol.107
, Issue.4
, pp. 453-465
-
-
Vazquez, E.J.1
Berthiaume, J.M.2
Kamath, V.3
-
29
-
-
34347352169
-
Diabetic cardiomyopathy revisited
-
S. Boudina and E. D. Abel, "Diabetic cardiomyopathy revisited," Circulation, vol. 115, no. 25, pp. 3213-3223, 2007.
-
(2007)
Circulation
, vol.115
, Issue.25
, pp. 3213-3223
-
-
Boudina, S.1
Abel, E.D.2
-
30
-
-
0042315364
-
Cardiac lipid accumulation associated with diastolic dysfunction in obese mice
-
C. Christoffersen, E. Bollano, M. L. Lindegaard et al., "Cardiac lipid accumulation associated with diastolic dysfunction in obese mice," Endocrinology, vol. 144, no. 8, pp. 3483-3490, 2003.
-
(2003)
Endocrinology
, vol.144
, Issue.8
, pp. 3483-3490
-
-
Christoffersen, C.1
Bollano, E.2
Lindegaard, M.L.3
-
31
-
-
0036353834
-
Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice
-
L. M. Semeniuk, A. J. Kryski, and D. L. Severson, "Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice," American Journal of Physiology Heart and Circulatory Physiology, vol. 283, no. 3, pp. H976-H982, 2002.
-
(2002)
American Journal of Physiology Heart and Circulatory Physiology
, vol.283
, Issue.3
, pp. H976-H982
-
-
Semeniuk, L.M.1
Kryski, A.J.2
Severson, D.L.3
-
32
-
-
13544258770
-
Diabetic cardiomyopathy: Recent evidence from mouse models of type 1 and type 2 diabetes
-
D. L. Severson, "Diabetic cardiomyopathy: recent evidence from mouse models of type 1 and type 2 diabetes," Canadian Journal of Physiology and Pharmacology, vol. 82, no. 10, pp. 813-823, 2004.
-
(2004)
Canadian Journal of Physiology and Pharmacology
, vol.82
, Issue.10
, pp. 813-823
-
-
Severson, D.L.1
-
33
-
-
84863161700
-
SIRT1 is dispensable for function of hematopoietic stem cells in adult mice
-
V. Leko, B. Varnum-Finney, H. Li et al., "SIRT1 is dispensable for function of hematopoietic stem cells in adult mice," Blood, vol. 119, no. 8, pp. 1856-1860, 2012.
-
(2012)
Blood
, vol.119
, Issue.8
, pp. 1856-1860
-
-
Leko, V.1
Varnum-Finney, B.2
Li, H.3
-
34
-
-
0037207475
-
The mammalian SIR2α protein has a role in embryogenesis and gametogenesis
-
M. W. McBurney, X. Yang, K. Jardine et al., "The mammalian SIR2α protein has a role in embryogenesis and gametogenesis," Molecular and Cellular Biology, vol. 23, no. 1, pp. 38-54, 2003.
-
(2003)
Molecular and Cellular Biology
, vol.23
, Issue.1
, pp. 38-54
-
-
McBurney, M.W.1
Yang, X.2
Jardine, K.3
-
35
-
-
85028642742
-
Transgenesis techniques
-
Springer, Totowa, NJ
-
R. Kühn and R. M. Torres, "Transgenesis Techniques," in Cre/loxP Recombination System and Gene Targeting, Springer, Totowa, NJ, 2002.
-
(2002)
Cre/loxP Recombination System and Gene Targeting
-
-
Kühn, R.1
Torres, R.M.2
-
36
-
-
33745962138
-
Therapeutic potential of resveratrol: The in vivo evidence
-
J. A. Baur and D. A. Sinclair, "Therapeutic potential of resveratrol: the in vivo evidence," Nature Reviews Drug Discovery, vol. 5, no. 6, pp. 493-506, 2006.
-
(2006)
Nature Reviews Drug Discovery
, vol.5
, Issue.6
, pp. 493-506
-
-
Baur, J.A.1
Sinclair, D.A.2
-
37
-
-
84931263991
-
Resveratrol attenuates high glucose-induced oxidative stress and cardiomyocyte apoptosis through AMPK
-
S. Guo, Q. Yao, Z. Ke, H. Chen, J. Wu, and C. Liu, "Resveratrol attenuates high glucose-induced oxidative stress and cardiomyocyte apoptosis through AMPK," Molecular and Cellular Endocrinology, vol. 412, pp. 85-94, 2015.
-
(2015)
Molecular and Cellular Endocrinology
, vol.412
, pp. 85-94
-
-
Guo, S.1
Yao, Q.2
Ke, Z.3
Chen, H.4
Wu, J.5
Liu, C.6
-
38
-
-
78049356035
-
Insulin and resveratrol act synergistically, preventing cardiac dysfunction in diabetes, but the advantage of resveratrol in diabetics with acute heart attack is antagonized by insulin
-
J. P. Huang, S. S. Huang, J. Y. Deng, C. C. Chang, Y. J. Day, and L. M. Hung, "Insulin and resveratrol act synergistically, preventing cardiac dysfunction in diabetes, but the advantage of resveratrol in diabetics with acute heart attack is antagonized by insulin," Free Radical Biology and Medicine, vol. 49, no. 11, pp. 1710-1721, 2010.
-
(2010)
Free Radical Biology and Medicine
, vol.49
, Issue.11
, pp. 1710-1721
-
-
Huang, J.P.1
Huang, S.S.2
Deng, J.Y.3
Chang, C.C.4
Day, Y.J.5
Hung, L.M.6
-
39
-
-
84946472612
-
Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB-p65 and histone 3
-
P. K. Bagul, N. Deepthi, R. Sultana, and S. K. Banerjee, "Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB-p65 and histone 3," The Journal of Nutritional Biochemistry, vol. 26, no. 11, pp. 1298-1307, 2015.
-
(2015)
The Journal of Nutritional Biochemistry
, vol.26
, Issue.11
, pp. 1298-1307
-
-
Bagul, P.K.1
Deepthi, N.2
Sultana, R.3
Banerjee, S.K.4
-
40
-
-
84958124870
-
Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy
-
G. Jia, V. G. DeMarco, and J. R. Sowers, "Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy," Nature Reviews Endocrinology, vol. 12, no. 3, pp. 144-153, 2016.
-
(2016)
Nature Reviews Endocrinology
, vol.12
, Issue.3
, pp. 144-153
-
-
Jia, G.1
DeMarco, V.G.2
Sowers, J.R.3
-
41
-
-
84898920521
-
Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways
-
K. Huynh, B. C. Bernardo, M. M. JR, and R. H. Ritchie, "Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways," Pharmacology & Therapeutics, vol. 142, no. 3, pp. 375-415, 2014.
-
(2014)
Pharmacology & Therapeutics
, vol.142
, Issue.3
, pp. 375-415
-
-
Huynh, K.1
Bernardo, B.C.2
Bernardo, M.M.3
Ritchie, R.H.4
-
42
-
-
84930441234
-
SIRT1 attenuates high glucose-induced insulin resistance via reducing mitochondrial dysfunction in skeletal muscle cells
-
H. H. Zhang, X. J. Ma, L. N. Wu et al., "SIRT1 attenuates high glucose-induced insulin resistance via reducing mitochondrial dysfunction in skeletal muscle cells," Experimental Biology & Medicine, vol. 240, no. 5, 2015.
-
(2015)
Experimental Biology & Medicine
, vol.240
, Issue.5
-
-
Zhang, H.H.1
Ma, X.J.2
Wu, L.N.3
-
43
-
-
79957969004
-
Mitochondrial dysfunction in diabetic cardiomyopathy
-
J. G. Duncan, "Mitochondrial dysfunction in diabetic cardiomyopathy," Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, vol. 1813, no. 7, pp. 1351-1359, 2011.
-
(2011)
Biochimica et Biophysica Acta (BBA)-Molecular Cell Research
, vol.1813
, Issue.7
, pp. 1351-1359
-
-
Duncan, J.G.1
-
44
-
-
0017759141
-
Evidence for cardiomyopathy in familial diabetes mellitus
-
T. J. Regan, M. M. Lyons, S. S. Ahmed et al., "Evidence for cardiomyopathy in familial diabetes mellitus," Journal of Clinical Investigation, vol. 60, no. 4, p. 885, 1977.
-
(1977)
Journal of Clinical Investigation
, vol.60
, Issue.4
, pp. 885
-
-
Regan, T.J.1
Lyons, M.M.2
Ahmed, S.S.3
-
45
-
-
61949120326
-
Diabetic cardiomyopathy-associated dysfunction in spatially distinct mitochondrial subpopulations
-
E. R. Dabkowski, C. L. Williamson, V. C. Bukowski et al., "Diabetic cardiomyopathy-associated dysfunction in spatially distinct mitochondrial subpopulations," American Journal of Physiology-Heart and Circulatory Physiology, vol. 296, no. 2, pp. H359-H369, 2009.
-
(2009)
American Journal of Physiology-Heart and Circulatory Physiology
, vol.296
, Issue.2
, pp. H359-H369
-
-
Dabkowski, E.R.1
Williamson, C.L.2
Bukowski, V.C.3
-
46
-
-
84930670567
-
Mitochondrial dynamics in diabetic cardiomyopathy
-
C. A. Galloway and Y. Yoon, "Mitochondrial dynamics in diabetic cardiomyopathy," Antioxidants & Redox Signaling, vol. 22, no. 17, pp. 1545-1562, 2015.
-
(2015)
Antioxidants & Redox Signaling
, vol.22
, Issue.17
, pp. 1545-1562
-
-
Galloway, C.A.1
Yoon, Y.2
-
47
-
-
84962191233
-
Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type-1 diabetic hearts: A novel mechanism contributing to diabetic cardiomyopathy
-
R. Ni, D. Zheng, S. Xiong et al., "Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type-1 diabetic hearts: a novel mechanism contributing to diabetic cardiomyopathy," Diabetes, vol. 65, no. 1, article db150963, pp. 255-268, 2015.
-
(2015)
Diabetes
, vol.65
, Issue.1
, pp. 255-268
-
-
Ni, R.1
Zheng, D.2
Xiong, S.3
-
48
-
-
84930226977
-
Diabetic cardiomyopathy and the role of mitochondrial dysfunction: Novel insights, mechanisms, and therapeutic strategies
-
M. A. Aon and D. B. Foster, "Diabetic cardiomyopathy and the role of mitochondrial dysfunction: novel insights, mechanisms, and therapeutic strategies," Antioxidants & Redox Signaling, vol. 22, no. 17, pp. 1499-1501, 2015.
-
(2015)
Antioxidants & Redox Signaling
, vol.22
, Issue.17
, pp. 1499-1501
-
-
Aon, M.A.1
Foster, D.B.2
-
49
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice
-
J. Lin, P. H. Wu, P. T. Tarr et al., "Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice," Cell, vol. 119, no. 1, pp. 121-135, 2004.
-
(2004)
Cell
, vol.119
, Issue.1
, pp. 121-135
-
-
Lin, J.1
Wu, P.H.2
Tarr, P.T.3
-
50
-
-
0037477855
-
Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1
-
M. E. Patti, A. J. Butte, S. Crunkhorn et al., "Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1," Proceedings of the National Academy of Sciences, vol. 100, no. 14, pp. 8466-8471, 2003.
-
(2003)
Proceedings of the National Academy of Sciences
, vol.100
, Issue.14
, pp. 8466-8471
-
-
Patti, M.E.1
Butte, A.J.2
Crunkhorn, S.3
-
51
-
-
21344444333
-
A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle
-
L. M. Sparks, H. Xie, R. A. Koza et al., "A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle," Diabetes, vol. 54, no. 7, pp. 1926-1933, 2005.
-
(2005)
Diabetes
, vol.54
, Issue.7
, pp. 1926-1933
-
-
Sparks, L.M.1
Xie, H.2
Koza, R.A.3
-
52
-
-
13444306450
-
Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators
-
N. Gleyzer, K. Vercauteren, and R. C. Scarpulla, "Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators," Molecular and Cellular Biology, vol. 25, no. 4, pp. 1354-1366, 2005.
-
(2005)
Molecular and Cellular Biology
, vol.25
, Issue.4
, pp. 1354-1366
-
-
Gleyzer, N.1
Vercauteren, K.2
Scarpulla, R.C.3
-
53
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
Z. Wu, P. Puigserver, U. Andersson et al., "Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1," Cell, vol. 98, no. 1, pp. 115-124, 1999.
-
(1999)
Cell
, vol.98
, Issue.1
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Andersson, U.3
-
54
-
-
23844494686
-
Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise
-
R. Cartoni, B. Léger, M. B. Hock et al., "Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise," The Journal of Physiology, vol. 567, no. 1, pp. 349-358, 2005.
-
(2005)
The Journal of Physiology
, vol.567
, Issue.1
, pp. 349-358
-
-
Cartoni, R.1
Léger, B.2
Hock, M.B.3
-
55
-
-
34347248013
-
The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload
-
J. M. Huss, K. Imahashi, C. R. Dufour et al., "The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload," Cell Metabolism, vol. 6, no. 1, pp. 25-37, 2007.
-
(2007)
Cell Metabolism
, vol.6
, Issue.1
, pp. 25-37
-
-
Huss, J.M.1
Imahashi, K.2
Dufour, C.R.3
-
56
-
-
2342592545
-
The estrogenrelated receptor α (ERRα) functions in PPARγ coactivator 1α (PGC-1α)-induced mitochondrial biogenesis
-
S. N. Schreiber, R. Emter, M. B. Hock et al., "The estrogenrelated receptor α (ERRα) functions in PPARγ coactivator 1α (PGC-1α)-induced mitochondrial biogenesis," Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 17, pp. 6472-6477, 2004.
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.17
, pp. 6472-6477
-
-
Schreiber, S.N.1
Emter, R.2
Hock, M.B.3
-
57
-
-
33847656213
-
Mitochondrial transcription factor A (TFAM): Roles in maintenance of mtDNA and cellular functions
-
D. Kang, S. H. Kim, and N. Hamasaki, "Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions," Mitochondrion, vol. 7, no. 1, pp. 39-44, 2007.
-
(2007)
Mitochondrion
, vol.7
, Issue.1
, pp. 39-44
-
-
Kang, D.1
Kim, S.H.2
Hamasaki, N.3
-
58
-
-
84928635872
-
Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway
-
T. Chen, J. Li, J. Liu et al., "Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway," American Journal of Physiology-Heart and Circulatory Physiology, vol. 308, no. 5, pp. H424-H434, 2015.
-
(2015)
American Journal of Physiology-Heart and Circulatory Physiology
, vol.308
, Issue.5
, pp. H424-H434
-
-
Chen, T.1
Li, J.2
Liu, J.3
|