메뉴 건너뛰기




Volumn 31, Issue 16, 2017, Pages 821-835

Deep learning in robotics: a review of recent research

Author keywords

artificial intelligence; Deep neural networks; human robot interaction

Indexed keywords

ARTIFICIAL INTELLIGENCE; DEEP NEURAL NETWORKS; HUMAN ROBOT INTERACTION; INTELLIGENT ROBOTS; NEURAL NETWORKS; ROBOTICS;

EID: 85028548653     PISSN: 01691864     EISSN: 15685535     Source Type: Journal    
DOI: 10.1080/01691864.2017.1365009     Document Type: Review
Times cited : (277)

References (135)
  • 1
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444.10.1038/nature14539
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 2
    • 84937801713 scopus 로고    scopus 로고
    • Machine learning: trends, perspectives, and prospects
    • Jordan MI, Mitchell TM. Machine learning:trends, perspectives, and prospects. Science. 2015;349(6245):255–260.10.1126/science.aaa8415
    • (2015) Science , vol.349 , Issue.6245 , pp. 255-260
    • Jordan, M.I.1    Mitchell, T.M.2
  • 3
    • 85087991588 scopus 로고    scopus 로고
    • Autonomous learning of state representations for control: an emerging field aims to autonomously learn state representations for reinforcement learning agents from their real-world sensor observations
    • Böhmer W, Springenberg JT, Boedecker J, et al. Autonomous learning of state representations for control:an emerging field aims to autonomously learn state representations for reinforcement learning agents from their real-world sensor observations. KI-Künstliche Intelligenz. 2015;29(4):353–362.10.1007/s13218-015-0356-1
    • (2015) KI-Künstliche Intelligenz , vol.29 , Issue.4 , pp. 353-362
    • Böhmer, W.1    Springenberg, J.T.2    Boedecker, J.3
  • 4
    • 0041153408 scopus 로고
    • Gauss and the invention of least squares
    • Stigler SM. Gauss and the invention of least squares. Ann Stat. 1981;9(3):465–474.10.1214/aos/1176345451
    • (1981) Ann Stat , vol.9 , Issue.3 , pp. 465-474
    • Stigler, S.M.1
  • 6
    • 85003393986 scopus 로고
    • Optimal programming problems with inequality constraints
    • Bryson AE, Denham WF, Dreyfus SE. Optimal programming problems with inequality constraints. AIAA J. 1963;1(11):2544–2550.10.2514/3.2107
    • (1963) AIAA J , vol.1 , Issue.11 , pp. 2544-2550
    • Bryson, A.E.1    Denham, W.F.2    Dreyfus, S.E.3
  • 7
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–536.10.1038/323533a0
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 9
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control Signals Sys. 1989;2(4):303–314.10.1007/BF02551274
    • (1989) Math Control Signals Sys , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 11
    • 0042276525 scopus 로고    scopus 로고
    • The vanishing gradient problem during learning recurrent neural nets and problem solutions
    • Hochreiter S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int J Uncertainty Fuzziness Knowledge-Based Syst. 1998;6(2):107–116.
    • (1998) Int J Uncertainty Fuzziness Knowledge-Based Syst , vol.6 , Issue.2 , pp. 107-116
    • Hochreiter, S.1
  • 12
    • 0023869287 scopus 로고    scopus 로고
    • Feedback-error-learning neural network for trajectory control of a robotic manipulator
    • Miyamoto H, Kawato M, Setoyama T, et al. Feedback-error-learning neural network for trajectory control of a robotic manipulator. Neural Netw. 1998;1(3):251–265.
    • (1998) Neural Netw , vol.1 , Issue.3 , pp. 251-265
    • Miyamoto, H.1    Kawato, M.2    Setoyama, T.3
  • 15
    • 0026366218 scopus 로고
    • Neural-network-based fuzzy logic control and decision system
    • Lin CT, Lee CSG. Neural-network-based fuzzy logic control and decision system. IEEE Trans Comput. 1991;40(12):1320–1336.10.1109/12.106218
    • (1991) IEEE Trans Comput , vol.40 , Issue.12 , pp. 1320-1336
    • Lin, C.T.1    Lee, C.S.G.2
  • 17
    • 2142662996 scopus 로고    scopus 로고
    • GPU implementation of neural networks
    • Oh K, Jung K. GPU implementation of neural networks. Pattern Recognit. 2004;37(6):1311–1314.10.1016/j.patcog.2004.01.013
    • (2004) Pattern Recognit , vol.37 , Issue.6 , pp. 1311-1314
    • Oh, K.1    Jung, K.2
  • 18
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton GE, Osindero S, Teh Y. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7):1527–1554.10.1162/neco.2006.18.7.1527
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 20
    • 9144234306 scopus 로고    scopus 로고
    • Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using RNNPB
    • Tani J, Ito M, Sugita Y. Self-organization of distributedly represented multiple behavior schemata in a mirror system:reviews of robot experiments using RNNPB. Neural Netw. 2004;17(8–9):1273–1289.10.1016/j.neunet.2004.05.007
    • (2004) Neural Netw , vol.17 , Issue.8-9 , pp. 1273-1289
    • Tani, J.1    Ito, M.2    Sugita, Y.3
  • 21
    • 40049092971 scopus 로고    scopus 로고
    • Central pattern generators for locomotion control in animals and robots: a review
    • Ijspeert AJ. Central pattern generators for locomotion control in animals and robots:a review. Neural Netw. 2008;21(4):642–653.10.1016/j.neunet.2008.03.014
    • (2008) Neural Netw , vol.21 , Issue.4 , pp. 642-653
    • Ijspeert, A.J.1
  • 25
    • 0036149522 scopus 로고    scopus 로고
    • Deep blue
    • Campbell M, Hoane AJ, Hsu F. Deep blue. Artif Intell. 2002;134(1–2):57–83.10.1016/S0004-3702(01)00129-1
    • (2002) Artif Intell , vol.134 , Issue.1-2 , pp. 57-83
    • Campbell, M.1    Hoane, A.J.2    Hsu, F.3
  • 26
    • 38949193299 scopus 로고    scopus 로고
    • Why is real-world visual object recognition hard?
    • Pinto N, Cox DD, DiCarlo JJ. Why is real-world visual object recognition hard? PLoS Comput Biol. 2008;4(1):151–156.
    • (2008) PLoS Comput Biol , vol.4 , Issue.1 , pp. 151-156
    • Pinto, N.1    Cox, D.D.2    DiCarlo, J.J.3
  • 27
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber J. Deep learning in neural networks:an overview. Neural Netw. 2015;61(1):85–117.10.1016/j.neunet.2014.09.003
    • (2015) Neural Netw , vol.61 , Issue.1 , pp. 85-117
    • Schmidhuber, J.1
  • 28
    • 64849110608 scopus 로고    scopus 로고
    • A novel connectionist system for unconstrained handwriting recognition
    • Graves A, Liwicki M, Fernández S, et al. A novel connectionist system for unconstrained handwriting recognition. Pattern Anal Mach Intell IEEE Trans. 2009;31(5):855–868.
    • (2009) Pattern Anal Mach Intell IEEE Trans , vol.31 , Issue.5
    • Graves, A.1    Liwicki, M.2    Fernández, S.3
  • 31
    • 84877789057 scopus 로고    scopus 로고
    • Deep neural networks segment neuronal membranes in electron microscopy images
    • Ciresan D, Giusti A, Gambardella LM, et al. Deep neural networks segment neuronal membranes in electron microscopy images. Adv Neural Inf Process Sys. 2012;25:2843–2851.
    • (2012) Adv Neural Inf Process Sys , vol.25 , pp. 2843-2851
    • Ciresan, D.1    Giusti, A.2    Gambardella, L.M.3
  • 32
    • 84885922439 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer histological images an ICPR 2012 contest
    • Roux L, Racoceanu D, Lomenie N, et al. Mitosis detection in breast cancer histological images an ICPR 2012 contest. J Pathol Inform. 2013;4(8).
    • (2013) J Pathol Inform , vol.4 , Issue.8
    • Roux, L.1    Racoceanu, D.2    Lomenie, N.3
  • 36
    • 27544483995 scopus 로고    scopus 로고
    • On the pairing of the softmax activation and cross-entropy penalty functions and the derivation of the softmax activation function
    • Melbourne:
    • Dunne RA, Campbell NA. On the pairing of the softmax activation and cross-entropy penalty functions and the derivation of the softmax activation function. In:Proceedings of 8th Australian Conference on the Neural Networks. Vol. 185. Melbourne; 1997. p. 181.
    • (1997) Proceedings of 8th Australian Conference on the Neural Networks , pp. 181
    • Dunne, R.A.1    Campbell, N.A.2
  • 37
    • 0242662161 scopus 로고    scopus 로고
    • The general inefficiency of batch training for gradient descent learning
    • Wilson DR, Martinez TR. The general inefficiency of batch training for gradient descent learning. Neural Netw. 2003;16(10):1429–1451.10.1016/S0893-6080(03)00138-2
    • (2003) Neural Netw , vol.16 , Issue.10 , pp. 1429-1451
    • Wilson, D.R.1    Martinez, T.R.2
  • 38
    • 84943546021 scopus 로고    scopus 로고
    • Rmsprop: divide the gradient by a running average of its recent magnitude
    • Technical report
    • Tieleman T, Hinton G. Rmsprop:divide the gradient by a running average of its recent magnitude. COURSERA:Neural Networks for Machine Learning. Technical report, 2012;31.
    • (2012) COURSERA: Neural Networks for Machine Learning , vol.31
    • Tieleman, T.1    Hinton, G.2
  • 40
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising dutoencoders: learning useful representations in a deep network with a local denoising criterion
    • Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising dutoencoders:learning useful representations in a deep network with a local denoising criterion. J Mach Learning Res. 2010;11:3371–3408.
    • (2010) J Mach Learning Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3
  • 42
    • 0002263996 scopus 로고    scopus 로고
    • Convolutional networks for images, speech, and time series
    • Arbib M., (ed), 2nd ed, Cambridge (MA): MIT Press
    • LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series. In:Arbib M, editor. The handbook of brain theory and neural networks. 2nd ed. Cambridge (MA):MIT Press; 2003. p. 1–14.
    • (2003) The handbook of brain theory and neural networks , pp. 1-14
    • LeCun, Y.1    Bengio, Y.2
  • 43
    • 0025503558 scopus 로고
    • Backpropagation through time: what it does and how to do it
    • Werbos PJ. Backpropagation through time:what it does and how to do it. Proc IEEE. 1990;78(10):1550–1560.10.1109/5.58337
    • (1990) Proc IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 44
    • 0029483769 scopus 로고
    • Nonlinear black-box modeling in system identification: a unified overview
    • Sjöberg J, Zhang Q, Ljung L, et al. Nonlinear black-box modeling in system identification:a unified overview. Automatica. 1995;31(12):1691–1724.10.1016/0005-1098(95)00120-8
    • (1995) Automatica , vol.31 , Issue.12 , pp. 1691-1724
    • Sjöberg, J.1    Zhang, Q.2    Ljung, L.3
  • 45
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–1780.10.1162/neco.1997.9.8.1735
    • (1997) Neural Comput , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 47
    • 84924051598 scopus 로고    scopus 로고
    • Human-level control through deep reinforcement learning
    • Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature. 2015;518:529–533.10.1038/nature14236
    • (2015) Nature , vol.518 , pp. 529-533
    • Mnih, V.1    Kavukcuoglu, K.2    Silver, D.3
  • 48
    • 0000359337 scopus 로고
    • Backpropagation applied to handwritten zip code recognition
    • LeCun Y, Boser B, Denker JS, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1(4):541–551.10.1162/neco.1989.1.4.541
    • (1989) Neural Comput , vol.1 , Issue.4 , pp. 541-551
    • LeCun, Y.1    Boser, B.2    Denker, J.S.3
  • 49
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–2324.10.1109/5.726791
    • (1998) Proc IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3
  • 54
    • 84906484697 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image super-resolution
    • Zurich:
    • Dong C, Loy CC, He K, et al. Learning a deep convolutional network for image super-resolution. In:European Conference on Computer Vision; Zurich; 2014. p. 184–199.
    • (2014) European Conference on Computer Vision
    • Dong, C.1    Loy, C.C.2    He, K.3
  • 58
    • 84870183903 scopus 로고    scopus 로고
    • 3D convolutional neural networks for human action recognition
    • Ji S, Xu W, Yang M, et al. 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Analysis Mach Intell. 2013;35(1):221–231.10.1109/TPAMI.2012.59
    • (2013) IEEE Trans Pattern Analysis Mach Intell , vol.35 , Issue.1 , pp. 221-231
    • Ji, S.1    Xu, W.2    Yang, M.3
  • 60
    • 0027147212 scopus 로고
    • Wave-net: a multiresolution, hierarchical neural network with localized learning
    • Bakshi BR, Stephanopoulos G. Wave-net:a multiresolution, hierarchical neural network with localized learning. AIChE J. 1993;39(1):57–81.10.1002/(ISSN)1547-5905
    • (1993) AIChE J , vol.39 , Issue.1 , pp. 57-81
    • Bakshi, B.R.1    Stephanopoulos, G.2
  • 61
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learning–a new frontier in artificial intelligence research [research frontier]
    • Arel I, Rose DC, Karnowski TP. Deep machine learning–a new frontier in artificial intelligence research [research frontier]. IEEE Comput Intell Mag. 2010;5(4):13–18.10.1109/MCI.2010.938364
    • (2010) IEEE Comput Intell Mag , vol.5 , Issue.4 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 62
    • 84946811871 scopus 로고    scopus 로고
    • Human detection and activity classification based on micro-doppler signatures using deep convolutional neural networks
    • Kim Y, Moon T. Human detection and activity classification based on micro-doppler signatures using deep convolutional neural networks. IEEE Geosci Remote Sens Lett. 2016;13(1):8–12.10.1109/LGRS.2015.2491329
    • (2016) IEEE Geosci Remote Sens Lett , vol.13 , Issue.1 , pp. 8-12
    • Kim, Y.1    Moon, T.2
  • 63
    • 84986257303 scopus 로고    scopus 로고
    • Learning depth from single monocular images using deep convolutional neural fields
    • Liu F, Shen C, Lin G, et al. Learning depth from single monocular images using deep convolutional neural fields. IEEE Trans Pattern Anal Mach Intell. 2016;38(10):2024–2039.10.1109/TPAMI.2015.2505283
    • (2016) IEEE Trans Pattern Anal Mach Intell , vol.38 , Issue.10 , pp. 2024-2039
    • Liu, F.1    Shen, C.2    Lin, G.3
  • 65
    • 84907855235 scopus 로고    scopus 로고
    • Helping robots see the big picture
    • Bohannon J. Helping robots see the big picture. Science. 2014;346(6206):186–187.10.1126/science.346.6206.186
    • (2014) Science , vol.346 , Issue.6206 , pp. 186-187
    • Bohannon, J.1
  • 67
    • 0033213819 scopus 로고    scopus 로고
    • What are the computations of the cerebellum, the basal ganglia and the cerebral cortex?
    • Doya K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw. 1999;12(7–8):961–974.10.1016/S0893-6080(99)00046-5
    • (1999) Neural Netw , vol.12 , Issue.7-8 , pp. 961-974
    • Doya, K.1
  • 68
    • 60649113210 scopus 로고    scopus 로고
    • Cognitive architectures: research issues and challenges
    • Langley P, Laird JE, Rogers S. Cognitive architectures:research issues and challenges. Cognitive Syst Research. 2009;10(2):141–160.10.1016/j.cogsys.2006.07.004
    • (2009) Cognitive Syst Research , vol.10 , Issue.2 , pp. 141-160
    • Langley, P.1    Laird, J.E.2    Rogers, S.3
  • 70
    • 84875932697 scopus 로고    scopus 로고
    • Cognitive architectures: where do we go from here?
    • Duch W, Oentaryo RJ, Pasquier M. Cognitive architectures:where do we go from here? AGI. 2008 Jun;171:122–136.
    • (2008) AGI , vol.171
    • Duch, W.1    Oentaryo, R.J.2    Pasquier, M.3
  • 75
    • 85029553398 scopus 로고    scopus 로고
    • DARPA Robotics Challenge [Internet]. [cited 2017 May 20]. Available from:https://www.darpa.mil/program/darpa-robotics-challenge
  • 79
    • 84961223498 scopus 로고    scopus 로고
    • Robot learning manipulation action plans by watching unconstrained videos from the world wide web
    • Austin (TX):
    • Yang Y, Li Y, Fermüller C, et al. Robot learning manipulation action plans by watching unconstrained videos from the world wide web. 29th AAAI Conference on Artificial Intelligence (AAAI-15); Austin (TX); 2015.
    • (2015) 29th AAAI Conference on Artificial Intelligence (AAAI-15)
    • Yang, Y.1    Li, Y.2    Fermüller, C.3
  • 82
    • 84898822427 scopus 로고    scopus 로고
    • A vision-based robotic grasping system using deep learning for 3D object recognition and pose estimation
    • Shenzhen:
    • Yu J, Weng K, Liang G, et al. A vision-based robotic grasping system using deep learning for 3D object recognition and pose estimation. 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO); Shenzhen; 2013. p. 1175–1180.
    • (2013) 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO)
    • Yu, J.1    Weng, K.2    Liang, G.3
  • 83
    • 84928013181 scopus 로고    scopus 로고
    • Deep learning for detecting robotic grasps
    • Lenz I, Lee H, Saxena A. Deep learning for detecting robotic grasps. Int J Robotics res. 2015;34(4–5):705–724.10.1177/0278364914549607
    • (2015) Int J Robotics res , vol.34 , Issue.4-5 , pp. 705-724
    • Lenz, I.1    Lee, H.2    Saxena, A.3
  • 87
    • 84965122247 scopus 로고    scopus 로고
    • Galileo: perceiving physical object properties by integrating a physics engine with deep learning
    • Wu J, Yildirim I, Lim JJ, et al. Galileo:perceiving physical object properties by integrating a physics engine with deep learning. Adv Neural Inf Process Syst. 2015;28:127–135.
    • (2015) Adv Neural Inf Process Syst , vol.28
    • Wu, J.1    Yildirim, I.2    Lim, J.J.3
  • 91
    • 84949818096 scopus 로고    scopus 로고
    • Modeling time series data with deep Fourier neural networks
    • Gashler MS, Ashmore SC. Modeling time series data with deep Fourier neural networks. Neurocomputing. 2016;188:3–11.10.1016/j.neucom.2015.01.108
    • (2016) Neurocomputing , vol.188 , pp. 3-11
    • Gashler, M.S.1    Ashmore, S.C.2
  • 92
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T. Regularization and variable selection via the elastic net. J Roy Stat Soc:Series B (Stat Methodol). 2005;67(2):301–320.10.1111/rssb.2005.67.issue-2
    • (2005) J Roy Stat Soc: Series B (Stat Methodol) , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 93
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: a simple way to prevent neural networks from overfitting
    • Srivastava N, Hinton GE, Krizhevsky A, et al. Dropout:a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15(1):1929–1958.
    • (2014) J Mach Learn Res , vol.15 , Issue.1 , pp. 1929-1958
    • Srivastava, N.1    Hinton, G.E.2    Krizhevsky, A.3
  • 96
    • 84928403415 scopus 로고    scopus 로고
    • The effect of whitening transformation on pooling operations in convolutional autoencoders
    • Li Z, Fan Y, Liu W. The effect of whitening transformation on pooling operations in convolutional autoencoders. EURASIP J Adv Signal Proc. 2015;2015:1–11.10.1186/s13634-015-0222-1
    • (2015) EURASIP J Adv Signal Proc , vol.2015
    • Li, Z.1    Fan, Y.2    Liu, W.3
  • 106
    • 85119442532 scopus 로고    scopus 로고
    • Deepnl: a deep learning nlp pipeline
    • Attardi G. Deepnl:a deep learning nlp pipeline. In:Proceedings of NAACL-HLT; Denver, CO; 2015. p. 109–115.
    • (2015) Proceedings of NAACL-HLT
    • Attardi, G.1
  • 107
    • 80052249332 scopus 로고    scopus 로고
    • Waffles: a machine learning toolkit
    • Gashler M. Waffles:a machine learning toolkit. J Mach Learn Res. 2012 Jul; 2383–2387.
    • (2012) J Mach Learn Res
    • Gashler, M.1
  • 110
    • 84930639546 scopus 로고    scopus 로고
    • Introducing CURRENNT: the munich open-source CUDA recurrent neural network toolkit
    • Weninger F, Bergmann J, Schuller BW. Introducing CURRENNT:the munich open-source CUDA recurrent neural network toolkit. J Mach Learn Res. 2015;16(3):547–551.
    • (2015) J Mach Learn Res , vol.16 , Issue.3 , pp. 547-551
    • Weninger, F.1    Bergmann, J.2    Schuller, B.W.3
  • 113
    • 84965129327 scopus 로고    scopus 로고
    • Embed to control: a locally linear latent dynamics model for control from raw images
    • Watter M, Springenberg J, Boedecker J, et al. Embed to control:a locally linear latent dynamics model for control from raw images. Adv Neural Inf Proc Sys. 2015;28:2746–2754.
    • Adv Neural Inf Proc Sys , pp. 2746-2754
    • Watter, M.1    Springenberg, J.2    Boedecker, J.3
  • 114
    • 84899525901 scopus 로고    scopus 로고
    • Multimodal integration learning of robot behavior using deep neural networks
    • Noda K, Arie H, Suga Y, et al. Multimodal integration learning of robot behavior using deep neural networks. Rob Auton Sys. 2014;62(6):721–736.10.1016/j.robot.2014.03.003
    • (2014) Rob Auton Sys , vol.62 , Issue.6 , pp. 721-736
    • Noda, K.1    Arie, H.2    Suga, Y.3
  • 116
    • 84945557458 scopus 로고    scopus 로고
    • Intelligent laser welding through representation, prediction, and control learning: an architecture with deep neural networks and reinforcement learning
    • Günther J, Pilarski PM, Helfrich G, et al. Intelligent laser welding through representation, prediction, and control learning:an architecture with deep neural networks and reinforcement learning. Mechatronics. 2015;34:1–11.
    • (2015) Mechatronics , vol.34 , pp. 1-11
    • Günther, J.1    Pilarski, P.M.2    Helfrich, G.3
  • 117
    • 85012874502 scopus 로고    scopus 로고
    • First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning
    • Günther J, Pilarski PM, Helfrich G, et al. First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning. Procedia Technol. 2014;15:474–483.10.1016/j.protcy.2014.09.007
    • (2014) Procedia Technol , vol.15 , pp. 474-483
    • Günther, J.1    Pilarski, P.M.2    Helfrich, G.3
  • 123
    • 84962319408 scopus 로고    scopus 로고
    • Achieving “synergy” in cognitive behavior of humanoids via deep learning of dynamic visuo-motor-attentional coordination
    • Seoul:
    • Hwang J, Jung M, Madapana N, et al. Achieving “synergy” in cognitive behavior of humanoids via deep learning of dynamic visuo-motor-attentional coordination. In:IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids); Seoul; 2015. p. 817–824.
    • (2015) IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)
    • Hwang, J.1    Jung, M.2    Madapana, N.3
  • 124
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–1780.10.1162/neco.1997.9.8.1735
    • (1997) Neural Comput , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 128
    • 84979924150 scopus 로고    scopus 로고
    • End-to-end training of deep visuomotor policies
    • Levine S, Finn C, Darrell T, et al. End-to-end training of deep visuomotor policies. J Mach Learn Res. 2016;17:1–40.
    • (2016) J Mach Learn Res , vol.17 , pp. 1-40
    • Levine, S.1    Finn, C.2    Darrell, T.3
  • 134
    • 84938296210 scopus 로고    scopus 로고
    • Is a cambrian explosion coming for robotics?
    • Pratt GA. Is a cambrian explosion coming for robotics? J Econ Perspect. 2015;29(3):51–60.10.1257/jep.29.3.51
    • (2015) J Econ Perspect , vol.29 , Issue.3 , pp. 51-60
    • Pratt, G.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.