-
1
-
-
84930630277
-
Deep learning
-
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444.10.1038/nature14539
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
2
-
-
84937801713
-
Machine learning: trends, perspectives, and prospects
-
Jordan MI, Mitchell TM. Machine learning:trends, perspectives, and prospects. Science. 2015;349(6245):255–260.10.1126/science.aaa8415
-
(2015)
Science
, vol.349
, Issue.6245
, pp. 255-260
-
-
Jordan, M.I.1
Mitchell, T.M.2
-
3
-
-
85087991588
-
Autonomous learning of state representations for control: an emerging field aims to autonomously learn state representations for reinforcement learning agents from their real-world sensor observations
-
Böhmer W, Springenberg JT, Boedecker J, et al. Autonomous learning of state representations for control:an emerging field aims to autonomously learn state representations for reinforcement learning agents from their real-world sensor observations. KI-Künstliche Intelligenz. 2015;29(4):353–362.10.1007/s13218-015-0356-1
-
(2015)
KI-Künstliche Intelligenz
, vol.29
, Issue.4
, pp. 353-362
-
-
Böhmer, W.1
Springenberg, J.T.2
Boedecker, J.3
-
4
-
-
0041153408
-
Gauss and the invention of least squares
-
Stigler SM. Gauss and the invention of least squares. Ann Stat. 1981;9(3):465–474.10.1214/aos/1176345451
-
(1981)
Ann Stat
, vol.9
, Issue.3
, pp. 465-474
-
-
Stigler, S.M.1
-
6
-
-
85003393986
-
Optimal programming problems with inequality constraints
-
Bryson AE, Denham WF, Dreyfus SE. Optimal programming problems with inequality constraints. AIAA J. 1963;1(11):2544–2550.10.2514/3.2107
-
(1963)
AIAA J
, vol.1
, Issue.11
, pp. 2544-2550
-
-
Bryson, A.E.1
Denham, W.F.2
Dreyfus, S.E.3
-
7
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–536.10.1038/323533a0
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
9
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control Signals Sys. 1989;2(4):303–314.10.1007/BF02551274
-
(1989)
Math Control Signals Sys
, vol.2
, Issue.4
, pp. 303-314
-
-
Cybenko, G.1
-
11
-
-
0042276525
-
The vanishing gradient problem during learning recurrent neural nets and problem solutions
-
Hochreiter S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int J Uncertainty Fuzziness Knowledge-Based Syst. 1998;6(2):107–116.
-
(1998)
Int J Uncertainty Fuzziness Knowledge-Based Syst
, vol.6
, Issue.2
, pp. 107-116
-
-
Hochreiter, S.1
-
12
-
-
0023869287
-
Feedback-error-learning neural network for trajectory control of a robotic manipulator
-
Miyamoto H, Kawato M, Setoyama T, et al. Feedback-error-learning neural network for trajectory control of a robotic manipulator. Neural Netw. 1998;1(3):251–265.
-
(1998)
Neural Netw
, vol.1
, Issue.3
, pp. 251-265
-
-
Miyamoto, H.1
Kawato, M.2
Setoyama, T.3
-
15
-
-
0026366218
-
Neural-network-based fuzzy logic control and decision system
-
Lin CT, Lee CSG. Neural-network-based fuzzy logic control and decision system. IEEE Trans Comput. 1991;40(12):1320–1336.10.1109/12.106218
-
(1991)
IEEE Trans Comput
, vol.40
, Issue.12
, pp. 1320-1336
-
-
Lin, C.T.1
Lee, C.S.G.2
-
17
-
-
2142662996
-
GPU implementation of neural networks
-
Oh K, Jung K. GPU implementation of neural networks. Pattern Recognit. 2004;37(6):1311–1314.10.1016/j.patcog.2004.01.013
-
(2004)
Pattern Recognit
, vol.37
, Issue.6
, pp. 1311-1314
-
-
Oh, K.1
Jung, K.2
-
18
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton GE, Osindero S, Teh Y. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7):1527–1554.10.1162/neco.2006.18.7.1527
-
(2006)
Neural Comput
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.3
-
20
-
-
9144234306
-
Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using RNNPB
-
Tani J, Ito M, Sugita Y. Self-organization of distributedly represented multiple behavior schemata in a mirror system:reviews of robot experiments using RNNPB. Neural Netw. 2004;17(8–9):1273–1289.10.1016/j.neunet.2004.05.007
-
(2004)
Neural Netw
, vol.17
, Issue.8-9
, pp. 1273-1289
-
-
Tani, J.1
Ito, M.2
Sugita, Y.3
-
21
-
-
40049092971
-
Central pattern generators for locomotion control in animals and robots: a review
-
Ijspeert AJ. Central pattern generators for locomotion control in animals and robots:a review. Neural Netw. 2008;21(4):642–653.10.1016/j.neunet.2008.03.014
-
(2008)
Neural Netw
, vol.21
, Issue.4
, pp. 642-653
-
-
Ijspeert, A.J.1
-
26
-
-
38949193299
-
Why is real-world visual object recognition hard?
-
Pinto N, Cox DD, DiCarlo JJ. Why is real-world visual object recognition hard? PLoS Comput Biol. 2008;4(1):151–156.
-
(2008)
PLoS Comput Biol
, vol.4
, Issue.1
, pp. 151-156
-
-
Pinto, N.1
Cox, D.D.2
DiCarlo, J.J.3
-
27
-
-
84910651844
-
Deep learning in neural networks: an overview
-
Schmidhuber J. Deep learning in neural networks:an overview. Neural Netw. 2015;61(1):85–117.10.1016/j.neunet.2014.09.003
-
(2015)
Neural Netw
, vol.61
, Issue.1
, pp. 85-117
-
-
Schmidhuber, J.1
-
31
-
-
84877789057
-
Deep neural networks segment neuronal membranes in electron microscopy images
-
Ciresan D, Giusti A, Gambardella LM, et al. Deep neural networks segment neuronal membranes in electron microscopy images. Adv Neural Inf Process Sys. 2012;25:2843–2851.
-
(2012)
Adv Neural Inf Process Sys
, vol.25
, pp. 2843-2851
-
-
Ciresan, D.1
Giusti, A.2
Gambardella, L.M.3
-
32
-
-
84885922439
-
Mitosis detection in breast cancer histological images an ICPR 2012 contest
-
Roux L, Racoceanu D, Lomenie N, et al. Mitosis detection in breast cancer histological images an ICPR 2012 contest. J Pathol Inform. 2013;4(8).
-
(2013)
J Pathol Inform
, vol.4
, Issue.8
-
-
Roux, L.1
Racoceanu, D.2
Lomenie, N.3
-
33
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neural networks
-
Nagoya: Springer
-
Cireşan DC, Giusti A, Gambardella LM, et al. Mitosis detection in breast cancer histology images with deep neural networks. In:Mori K, Sakuma I, Sato Y, Barillot C, Navab N, editors. Medical Image Computing and Computer-Assisted Intervention–MICCAI. Nagoya:Springer; 2013.
-
(2013)
Medical Image Computing and Computer-Assisted Intervention–MICCAI
-
-
Cireşan, D.C.1
Giusti, A.2
Gambardella, L.M.3
Mori, K.4
Sakuma, I.5
Sato, Y.6
Barillot, C.7
Navab, N.8
-
36
-
-
27544483995
-
On the pairing of the softmax activation and cross-entropy penalty functions and the derivation of the softmax activation function
-
Melbourne:
-
Dunne RA, Campbell NA. On the pairing of the softmax activation and cross-entropy penalty functions and the derivation of the softmax activation function. In:Proceedings of 8th Australian Conference on the Neural Networks. Vol. 185. Melbourne; 1997. p. 181.
-
(1997)
Proceedings of 8th Australian Conference on the Neural Networks
, pp. 181
-
-
Dunne, R.A.1
Campbell, N.A.2
-
37
-
-
0242662161
-
The general inefficiency of batch training for gradient descent learning
-
Wilson DR, Martinez TR. The general inefficiency of batch training for gradient descent learning. Neural Netw. 2003;16(10):1429–1451.10.1016/S0893-6080(03)00138-2
-
(2003)
Neural Netw
, vol.16
, Issue.10
, pp. 1429-1451
-
-
Wilson, D.R.1
Martinez, T.R.2
-
38
-
-
84943546021
-
Rmsprop: divide the gradient by a running average of its recent magnitude
-
Technical report
-
Tieleman T, Hinton G. Rmsprop:divide the gradient by a running average of its recent magnitude. COURSERA:Neural Networks for Machine Learning. Technical report, 2012;31.
-
(2012)
COURSERA: Neural Networks for Machine Learning
, vol.31
-
-
Tieleman, T.1
Hinton, G.2
-
40
-
-
79551480483
-
Stacked denoising dutoencoders: learning useful representations in a deep network with a local denoising criterion
-
Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising dutoencoders:learning useful representations in a deep network with a local denoising criterion. J Mach Learning Res. 2010;11:3371–3408.
-
(2010)
J Mach Learning Res
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
-
42
-
-
0002263996
-
Convolutional networks for images, speech, and time series
-
Arbib M., (ed), 2nd ed, Cambridge (MA): MIT Press
-
LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series. In:Arbib M, editor. The handbook of brain theory and neural networks. 2nd ed. Cambridge (MA):MIT Press; 2003. p. 1–14.
-
(2003)
The handbook of brain theory and neural networks
, pp. 1-14
-
-
LeCun, Y.1
Bengio, Y.2
-
43
-
-
0025503558
-
Backpropagation through time: what it does and how to do it
-
Werbos PJ. Backpropagation through time:what it does and how to do it. Proc IEEE. 1990;78(10):1550–1560.10.1109/5.58337
-
(1990)
Proc IEEE
, vol.78
, Issue.10
, pp. 1550-1560
-
-
Werbos, P.J.1
-
44
-
-
0029483769
-
Nonlinear black-box modeling in system identification: a unified overview
-
Sjöberg J, Zhang Q, Ljung L, et al. Nonlinear black-box modeling in system identification:a unified overview. Automatica. 1995;31(12):1691–1724.10.1016/0005-1098(95)00120-8
-
(1995)
Automatica
, vol.31
, Issue.12
, pp. 1691-1724
-
-
Sjöberg, J.1
Zhang, Q.2
Ljung, L.3
-
45
-
-
0031573117
-
Long short-term memory
-
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–1780.10.1162/neco.1997.9.8.1735
-
(1997)
Neural Comput
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
47
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature. 2015;518:529–533.10.1038/nature14236
-
(2015)
Nature
, vol.518
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
-
48
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
LeCun Y, Boser B, Denker JS, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1(4):541–551.10.1162/neco.1989.1.4.541
-
(1989)
Neural Comput
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
-
49
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–2324.10.1109/5.726791
-
(1998)
Proc IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
-
54
-
-
84906484697
-
Learning a deep convolutional network for image super-resolution
-
Zurich:
-
Dong C, Loy CC, He K, et al. Learning a deep convolutional network for image super-resolution. In:European Conference on Computer Vision; Zurich; 2014. p. 184–199.
-
(2014)
European Conference on Computer Vision
-
-
Dong, C.1
Loy, C.C.2
He, K.3
-
58
-
-
84870183903
-
3D convolutional neural networks for human action recognition
-
Ji S, Xu W, Yang M, et al. 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Analysis Mach Intell. 2013;35(1):221–231.10.1109/TPAMI.2012.59
-
(2013)
IEEE Trans Pattern Analysis Mach Intell
, vol.35
, Issue.1
, pp. 221-231
-
-
Ji, S.1
Xu, W.2
Yang, M.3
-
59
-
-
84890543083
-
Speech recognition with deep recurrent neural networks
-
Vancouver, BC, Canada:
-
Graves A, Mohamed MR, Hinton G., Speech recognition with deep recurrent neural networks. In:IEEE International Conference on Acoustics, Speech and Signal Proceedings (ICASSP); Vancouver, BC, Canada 2013. p. 6645–6649.
-
(2013)
IEEE International Conference on Acoustics, Speech and Signal Proceedings (ICASSP)
-
-
Graves, A.1
Mohamed, M.R.2
Hinton, G.3
-
60
-
-
0027147212
-
Wave-net: a multiresolution, hierarchical neural network with localized learning
-
Bakshi BR, Stephanopoulos G. Wave-net:a multiresolution, hierarchical neural network with localized learning. AIChE J. 1993;39(1):57–81.10.1002/(ISSN)1547-5905
-
(1993)
AIChE J
, vol.39
, Issue.1
, pp. 57-81
-
-
Bakshi, B.R.1
Stephanopoulos, G.2
-
61
-
-
77958488310
-
Deep machine learning–a new frontier in artificial intelligence research [research frontier]
-
Arel I, Rose DC, Karnowski TP. Deep machine learning–a new frontier in artificial intelligence research [research frontier]. IEEE Comput Intell Mag. 2010;5(4):13–18.10.1109/MCI.2010.938364
-
(2010)
IEEE Comput Intell Mag
, vol.5
, Issue.4
, pp. 13-18
-
-
Arel, I.1
Rose, D.C.2
Karnowski, T.P.3
-
62
-
-
84946811871
-
Human detection and activity classification based on micro-doppler signatures using deep convolutional neural networks
-
Kim Y, Moon T. Human detection and activity classification based on micro-doppler signatures using deep convolutional neural networks. IEEE Geosci Remote Sens Lett. 2016;13(1):8–12.10.1109/LGRS.2015.2491329
-
(2016)
IEEE Geosci Remote Sens Lett
, vol.13
, Issue.1
, pp. 8-12
-
-
Kim, Y.1
Moon, T.2
-
63
-
-
84986257303
-
Learning depth from single monocular images using deep convolutional neural fields
-
Liu F, Shen C, Lin G, et al. Learning depth from single monocular images using deep convolutional neural fields. IEEE Trans Pattern Anal Mach Intell. 2016;38(10):2024–2039.10.1109/TPAMI.2015.2505283
-
(2016)
IEEE Trans Pattern Anal Mach Intell
, vol.38
, Issue.10
, pp. 2024-2039
-
-
Liu, F.1
Shen, C.2
Lin, G.3
-
65
-
-
84907855235
-
Helping robots see the big picture
-
Bohannon J. Helping robots see the big picture. Science. 2014;346(6206):186–187.10.1126/science.346.6206.186
-
(2014)
Science
, vol.346
, Issue.6206
, pp. 186-187
-
-
Bohannon, J.1
-
67
-
-
0033213819
-
What are the computations of the cerebellum, the basal ganglia and the cerebral cortex?
-
Doya K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw. 1999;12(7–8):961–974.10.1016/S0893-6080(99)00046-5
-
(1999)
Neural Netw
, vol.12
, Issue.7-8
, pp. 961-974
-
-
Doya, K.1
-
68
-
-
60649113210
-
Cognitive architectures: research issues and challenges
-
Langley P, Laird JE, Rogers S. Cognitive architectures:research issues and challenges. Cognitive Syst Research. 2009;10(2):141–160.10.1016/j.cogsys.2006.07.004
-
(2009)
Cognitive Syst Research
, vol.10
, Issue.2
, pp. 141-160
-
-
Langley, P.1
Laird, J.E.2
Rogers, S.3
-
70
-
-
84875932697
-
Cognitive architectures: where do we go from here?
-
Duch W, Oentaryo RJ, Pasquier M. Cognitive architectures:where do we go from here? AGI. 2008 Jun;171:122–136.
-
(2008)
AGI
, vol.171
-
-
Duch, W.1
Oentaryo, R.J.2
Pasquier, M.3
-
75
-
-
85029553398
-
-
DARPA Robotics Challenge [Internet]. [cited 2017 May 20]. Available from:https://www.darpa.mil/program/darpa-robotics-challenge
-
-
-
-
83
-
-
84928013181
-
Deep learning for detecting robotic grasps
-
Lenz I, Lee H, Saxena A. Deep learning for detecting robotic grasps. Int J Robotics res. 2015;34(4–5):705–724.10.1177/0278364914549607
-
(2015)
Int J Robotics res
, vol.34
, Issue.4-5
, pp. 705-724
-
-
Lenz, I.1
Lee, H.2
Saxena, A.3
-
87
-
-
84965122247
-
Galileo: perceiving physical object properties by integrating a physics engine with deep learning
-
Wu J, Yildirim I, Lim JJ, et al. Galileo:perceiving physical object properties by integrating a physics engine with deep learning. Adv Neural Inf Process Syst. 2015;28:127–135.
-
(2015)
Adv Neural Inf Process Syst
, vol.28
-
-
Wu, J.1
Yildirim, I.2
Lim, J.J.3
-
91
-
-
84949818096
-
Modeling time series data with deep Fourier neural networks
-
Gashler MS, Ashmore SC. Modeling time series data with deep Fourier neural networks. Neurocomputing. 2016;188:3–11.10.1016/j.neucom.2015.01.108
-
(2016)
Neurocomputing
, vol.188
, pp. 3-11
-
-
Gashler, M.S.1
Ashmore, S.C.2
-
92
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou H, Hastie T. Regularization and variable selection via the elastic net. J Roy Stat Soc:Series B (Stat Methodol). 2005;67(2):301–320.10.1111/rssb.2005.67.issue-2
-
(2005)
J Roy Stat Soc: Series B (Stat Methodol)
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
93
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava N, Hinton GE, Krizhevsky A, et al. Dropout:a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15(1):1929–1958.
-
(2014)
J Mach Learn Res
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
-
96
-
-
84928403415
-
The effect of whitening transformation on pooling operations in convolutional autoencoders
-
Li Z, Fan Y, Liu W. The effect of whitening transformation on pooling operations in convolutional autoencoders. EURASIP J Adv Signal Proc. 2015;2015:1–11.10.1186/s13634-015-0222-1
-
(2015)
EURASIP J Adv Signal Proc
, vol.2015
-
-
Li, Z.1
Fan, Y.2
Liu, W.3
-
106
-
-
85119442532
-
Deepnl: a deep learning nlp pipeline
-
Attardi G. Deepnl:a deep learning nlp pipeline. In:Proceedings of NAACL-HLT; Denver, CO; 2015. p. 109–115.
-
(2015)
Proceedings of NAACL-HLT
-
-
Attardi, G.1
-
107
-
-
80052249332
-
Waffles: a machine learning toolkit
-
Gashler M. Waffles:a machine learning toolkit. J Mach Learn Res. 2012 Jul; 2383–2387.
-
(2012)
J Mach Learn Res
-
-
Gashler, M.1
-
110
-
-
84930639546
-
Introducing CURRENNT: the munich open-source CUDA recurrent neural network toolkit
-
Weninger F, Bergmann J, Schuller BW. Introducing CURRENNT:the munich open-source CUDA recurrent neural network toolkit. J Mach Learn Res. 2015;16(3):547–551.
-
(2015)
J Mach Learn Res
, vol.16
, Issue.3
, pp. 547-551
-
-
Weninger, F.1
Bergmann, J.2
Schuller, B.W.3
-
113
-
-
84965129327
-
Embed to control: a locally linear latent dynamics model for control from raw images
-
Watter M, Springenberg J, Boedecker J, et al. Embed to control:a locally linear latent dynamics model for control from raw images. Adv Neural Inf Proc Sys. 2015;28:2746–2754.
-
Adv Neural Inf Proc Sys
, pp. 2746-2754
-
-
Watter, M.1
Springenberg, J.2
Boedecker, J.3
-
114
-
-
84899525901
-
Multimodal integration learning of robot behavior using deep neural networks
-
Noda K, Arie H, Suga Y, et al. Multimodal integration learning of robot behavior using deep neural networks. Rob Auton Sys. 2014;62(6):721–736.10.1016/j.robot.2014.03.003
-
(2014)
Rob Auton Sys
, vol.62
, Issue.6
, pp. 721-736
-
-
Noda, K.1
Arie, H.2
Suga, Y.3
-
116
-
-
84945557458
-
Intelligent laser welding through representation, prediction, and control learning: an architecture with deep neural networks and reinforcement learning
-
Günther J, Pilarski PM, Helfrich G, et al. Intelligent laser welding through representation, prediction, and control learning:an architecture with deep neural networks and reinforcement learning. Mechatronics. 2015;34:1–11.
-
(2015)
Mechatronics
, vol.34
, pp. 1-11
-
-
Günther, J.1
Pilarski, P.M.2
Helfrich, G.3
-
117
-
-
85012874502
-
First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning
-
Günther J, Pilarski PM, Helfrich G, et al. First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning. Procedia Technol. 2014;15:474–483.10.1016/j.protcy.2014.09.007
-
(2014)
Procedia Technol
, vol.15
, pp. 474-483
-
-
Günther, J.1
Pilarski, P.M.2
Helfrich, G.3
-
123
-
-
84962319408
-
Achieving “synergy” in cognitive behavior of humanoids via deep learning of dynamic visuo-motor-attentional coordination
-
Seoul:
-
Hwang J, Jung M, Madapana N, et al. Achieving “synergy” in cognitive behavior of humanoids via deep learning of dynamic visuo-motor-attentional coordination. In:IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids); Seoul; 2015. p. 817–824.
-
(2015)
IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)
-
-
Hwang, J.1
Jung, M.2
Madapana, N.3
-
124
-
-
0031573117
-
Long short-term memory
-
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–1780.10.1162/neco.1997.9.8.1735
-
(1997)
Neural Comput
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
128
-
-
84979924150
-
End-to-end training of deep visuomotor policies
-
Levine S, Finn C, Darrell T, et al. End-to-end training of deep visuomotor policies. J Mach Learn Res. 2016;17:1–40.
-
(2016)
J Mach Learn Res
, vol.17
, pp. 1-40
-
-
Levine, S.1
Finn, C.2
Darrell, T.3
-
129
-
-
84979715630
-
Supervised actor-critic reinforcement learning
-
Wiley
-
Rosenstein M, Barto A. Supervised actor-critic reinforcement learning. In:Si J, Barto AG, Powell WB, et al., editors. Handbook of Learning and Approximate dynamic programming. Wiley; 2004.
-
(2004)
Handbook of Learning and Approximate dynamic programming
-
-
Rosenstein, M.1
Barto, A.2
Si, J.3
Barto, A.G.4
Powell, W.B.5
-
134
-
-
84938296210
-
Is a cambrian explosion coming for robotics?
-
Pratt GA. Is a cambrian explosion coming for robotics? J Econ Perspect. 2015;29(3):51–60.10.1257/jep.29.3.51
-
(2015)
J Econ Perspect
, vol.29
, Issue.3
, pp. 51-60
-
-
Pratt, G.A.1
|