메뉴 건너뛰기




Volumn 11, Issue , 2015, Pages

DeepMPC: Learning deep latent features for model predictive control

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84965098612     PISSN: None     EISSN: 2330765X     Source Type: Conference Proceeding    
DOI: 10.15607/RSS.2015.XI.012     Document Type: Conference Paper
Times cited : (379)

References (38)
  • 1
    • 0022771891 scopus 로고
    • Estimation of inertial parameters of manipulator loads and links
    • Sept.
    • C. G. Atkeson, C. H. An, and J. M. Hollerbach. Estimation of inertial parameters of manipulator loads and links. Int. J. Rob. Res., 5(3):101-119, Sept. 1986.
    • (1986) Int. J. Rob. Res. , vol.5 , Issue.3 , pp. 101-119
    • Atkeson, C.G.1    An, C.H.2    Hollerbach, J.M.3
  • 3
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio. Learning deep architectures for AI. FTML, 2 (1):1-127, 2009.
    • (2009) FTML , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 4
    • 0030173177 scopus 로고    scopus 로고
    • A brief history of automatic control
    • Jun
    • S. Bennett. A brief history of automatic control. Control Systems, IEEE, 16(3):17-25, Jun 1996. ISSN 1066-033X.
    • (1996) Control Systems, IEEE , vol.16 , Issue.3 , pp. 17-25
    • Bennett, S.1
  • 6
    • 34249668981 scopus 로고    scopus 로고
    • Exploiting redundancy for flexible behavior: Unsupervised learning in a modular sensorimotor control architecture
    • M. V. Butz, O. Herbort, and J. Hoffmann. Exploiting redundancy for flexible behavior: Unsupervised learning in a modular sensorimotor control architecture. Psychological Review, 114:1015-1046, 2007.
    • (2007) Psychological Review , vol.114 , pp. 1015-1046
    • Butz, M.V.1    Herbort, O.2    Hoffmann, J.3
  • 7
    • 63149186832 scopus 로고    scopus 로고
    • Confidence-based policy learning from demonstration using gaussian mixture models
    • S. Chernova and M. Veloso. Confidence-based policy learning from demonstration using gaussian mixture models. In AAMAS, 2007.
    • (2007) AAMAS
    • Chernova, S.1    Veloso, M.2
  • 8
    • 0032165769 scopus 로고    scopus 로고
    • Successive one-step-ahead predictions in multiple model predictive control
    • C.-M. Chow, A. G. Kuznetsov, and D. W. Clarke. Successive one-step-ahead predictions in multiple model predictive control. Int. J. Systems Science, 29(9):971-979, 1998.
    • (1998) Int. J. Systems Science , vol.29 , Issue.9 , pp. 971-979
    • Chow, C.-M.1    Kuznetsov, A.G.2    Clarke, D.W.3
  • 9
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert and J. Weston. A unified architecture for natural language processing: deep neural networks with multitask learning. In ICML, 2008.
    • (2008) ICML
    • Collobert, R.1    Weston, J.2
  • 10
    • 80053441894 scopus 로고    scopus 로고
    • Pilco: A model-based and data-efficient approach to policy search
    • M. P. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to policy search. In ICML, 2011.
    • (2011) ICML
    • Deisenroth, M.P.1    Rasmussen, C.E.2
  • 11
    • 84929193014 scopus 로고    scopus 로고
    • Model predictive control architectures with force feedback for robotic-assisted beating heart surgery
    • M. Dominici and R. Cortesao. Model predictive control architectures with force feedback for robotic-assisted beating heart surgery. In ICRA, 2014.
    • (2014) ICRA
    • Dominici, M.1    Cortesao, R.2
  • 12
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • July
    • J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 12:2121-2159, July 2011.
    • (2011) JMLR , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 14
    • 84911472718 scopus 로고    scopus 로고
    • An integrated system for real-time model-predictive control of humanoid robots
    • T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, and E. Todorov. An integrated system for real-time model-predictive control of humanoid robots. In ICHR, 2013.
    • (2013) ICHR
    • Erez, T.1    Lowrey, K.2    Tassa, Y.3    Kumar, V.4    Kolev, S.5    Todorov, E.6
  • 15
    • 84911468319 scopus 로고    scopus 로고
    • Learning haptic representation for manipulating deformable food objects
    • M. Gemici and A. Saxena. Learning haptic representation for manipulating deformable food objects. In IROS, 2014.
    • (2014) IROS
    • Gemici, M.1    Saxena, A.2
  • 17
    • 84890543083 scopus 로고    scopus 로고
    • Speech recognition with deep recurrent neural networks
    • A. Graves, A. Mohamed, and G. E. Hinton. Speech recognition with deep recurrent neural networks. In ICASSP, 2013.
    • (2013) ICASSP
    • Graves, A.1    Mohamed, A.2    Hinton, G.E.3
  • 19
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 21
    • 80053623760 scopus 로고    scopus 로고
    • Learning stable nonlinear dynamical systems with gaussian mixture models
    • Oct
    • S. Khansari-Zadeh and A. Billard. Learning stable nonlinear dynamical systems with gaussian mixture models. Robotics, IEEE Transactions on, 27(5):943-957, Oct 2011.
    • (2011) Robotics, IEEE Transactions on , vol.27 , Issue.5 , pp. 943-957
    • Khansari-Zadeh, S.1    Billard, A.2
  • 23
    • 80053437034 scopus 로고    scopus 로고
    • On optimization methods for deep learning
    • Q. V. Le, A. Coates, B. Prochnow, and A. Y. Ng. On optimization methods for deep learning. In ICML, 2011.
    • (2011) ICML
    • Le, Q.V.1    Coates, A.2    Prochnow, B.3    Ng, A.Y.4
  • 24
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009.
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 25
    • 85006126257 scopus 로고    scopus 로고
    • Learning neural network policies with guided policy search under unknown dynamics
    • S. Levine and P. Abbeel. Learning neural network policies with guided policy search under unknown dynamics. In NIPS, 2015.
    • (2015) NIPS
    • Levine, S.1    Abbeel, P.2
  • 26
    • 84929223738 scopus 로고    scopus 로고
    • Experimental evaluation of adaptive model-based control for underwater vehicles in the presence of unmodeled actuator dynamics
    • C. McFarland and L. Whitcomb. Experimental evaluation of adaptive model-based control for underwater vehicles in the presence of unmodeled actuator dynamics. In ICRA, 2014.
    • (2014) ICRA
    • McFarland, C.1    Whitcomb, L.2
  • 27
    • 77953520240 scopus 로고    scopus 로고
    • Learning to represent spatial transformations with factored higher-order boltzmann machines
    • June
    • R. Memisevic and G. E. Hinton. Learning to represent spatial transformations with factored higher-order boltzmann machines. Neural Computation, 22(6):1473-1492, June 2010.
    • (2010) Neural Computation , vol.22 , Issue.6 , pp. 1473-1492
    • Memisevic, R.1    Hinton, G.E.2
  • 31
    • 81255141919 scopus 로고    scopus 로고
    • Model learning for robot control: A survey
    • D. Nguyen-Tuong and J. Peters. Model learning for robot control: a survey. Cognitive Processing, 12(4), 2011.
    • (2011) Cognitive Processing , vol.12 , Issue.4
    • Nguyen-Tuong, D.1    Peters, J.2
  • 33
    • 85006133151 scopus 로고    scopus 로고
    • ROS: Robot Operating System. http://www.ros.org.
  • 36
    • 50149089218 scopus 로고    scopus 로고
    • Decentralized reflective model predictive control of multiple flying robots in dynamic environment
    • D. Shim, H. Kim, and S. Sastry. Decentralized reflective model predictive control of multiple flying robots in dynamic environment. In Conference on Decision and Control, 2003.
    • (2003) Conference on Decision and Control
    • Shim, D.1    Kim, H.2    Sastry, S.3
  • 37
    • 80053459857 scopus 로고    scopus 로고
    • Generating text with recurrent neural networks
    • I. Sutskever, J. Martens, and G. Hinton. Generating text with recurrent neural networks. In ICML, 2011.
    • (2011) ICML
    • Sutskever, I.1    Martens, J.2    Hinton, G.3
  • 38
    • 71149118574 scopus 로고    scopus 로고
    • Factored conditional restricted boltzmann machines for modeling motion style
    • G. W. Taylor and G. E. Hinton. Factored conditional restricted boltzmann machines for modeling motion style. In ICML, 2009.
    • (2009) ICML
    • Taylor, G.W.1    Hinton, G.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.