메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 2746-2754

Embed to control: A locally linear latent dynamics model for control from raw images

Author keywords

[No Author keywords available]

Indexed keywords

DYNAMICAL SYSTEMS; LINEAR CONTROL SYSTEMS;

EID: 84965129327     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (806)

References (32)
  • 2
    • 84965150792 scopus 로고    scopus 로고
    • A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems
    • E. Todorov and W. Li. A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems. In ACC. IEEE, 2005.
    • (2005) ACC. IEEE
    • Todorov, E.1    Li, W.2
  • 3
    • 85161959352 scopus 로고    scopus 로고
    • Receding horizon differential dynamic programming
    • Y. Tassa, T. Erez, and W. D. Smart. Receding horizon differential dynamic programming. In Proc. of NIPS, 2008.
    • (2008) Proc. of NIPS
    • Tassa, Y.1    Erez, T.2    Smart, W.D.3
  • 4
    • 84937825341 scopus 로고    scopus 로고
    • Probabilistic differential dynamic programming
    • Y. Pan and E. Theodorou. Probabilistic differential dynamic programming. In Proc. of NIPS, 2014.
    • (2014) Proc. of NIPS
    • Pan, Y.1    Theodorou, E.2
  • 5
    • 84898932265 scopus 로고    scopus 로고
    • Variational policy search via trajectory optimization
    • S. Levine and V. Koltun. Variational policy search via trajectory optimization. In Proc. of NIPS, 2013.
    • (2013) Proc. of NIPS
    • Levine, S.1    Koltun, V.2
  • 7
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In Proc. of ICML, 2014.
    • (2014) Proc. of ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 9
    • 84959184995 scopus 로고    scopus 로고
    • Learning to generate chairs with convolutional neural networks
    • A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to generate chairs with convolutional neural networks. In Proc. of CVPR, 2015.
    • (2015) Proc. of CVPR
    • Dosovitskiy, A.1    Springenberg, J.T.2    Brox, T.3
  • 11
    • 17444424051 scopus 로고    scopus 로고
    • Iterative linear quadratic regulator design for nonlinear biological movement systems
    • W. Li and E. Todorov. Iterative Linear Quadratic Regulator Design for Nonlinear Biological Movement Systems. In Proc. of ICINCO, 2004.
    • (2004) Proc. of ICINCO
    • Li, W.1    Todorov, E.2
  • 12
    • 71149083296 scopus 로고    scopus 로고
    • Robot trajectory optimization using approximate inference
    • M. Toussaint. Robot Trajectory Optimization using Approximate Inference. In Proc. of ICML, 2009.
    • (2009) Proc. of ICML
    • Toussaint, M.1
  • 14
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proc. of ICLR, 2015.
    • (2015) Proc. of ICLR
    • Kingma, D.1    Ba, J.2
  • 15
    • 0030082891 scopus 로고    scopus 로고
    • An approach to fuzzy control of nonlinear systems; stability and design issues
    • H. Wang, K. Tanaka, and M. Griffin. An approach to fuzzy control of nonlinear systems; stability and design issues. IEEE Trans. on Fuzzy Systems, 4(1), 1996.
    • (1996) IEEE Trans. on Fuzzy Systems , vol.4 , Issue.1
    • Wang, H.1    Tanaka, K.2    Griffin, M.3
  • 18
    • 79959451979 scopus 로고    scopus 로고
    • Deep auto-encoder neural networks in reinforcement learning
    • S. Lange and M. Riedmiller. Deep auto-encoder neural networks in reinforcement learning. In Proc. of IJCNN, 2010.
    • (2010) Proc. of IJCNN
    • Lange, S.1    Riedmiller, M.2
  • 20
    • 84962230791 scopus 로고    scopus 로고
    • Learning of non-parametric control policies with highdimensional state features
    • H. van Hoof, J. Peters, and G. Neumann. Learning of non-parametric control policies with highdimensional state features. In Proc. of AISTATS, 2015.
    • (2015) Proc. of AISTATS
    • Van Hoof, H.1    Peters, J.2    Neumann, G.3
  • 27
    • 85083950051 scopus 로고    scopus 로고
    • Transformation properties of learned visual representations
    • T. Cohen and M. Welling. Transformation properties of learned visual representations. In ICLR, 2015.
    • (2015) ICLR
    • Cohen, T.1    Welling, M.2
  • 28
    • 77956001537 scopus 로고    scopus 로고
    • Dynamical binary latent variable models for 3d human pose tracking
    • G. W. Taylor, L. Sigal, D. J. Fleet, and G. E. Hinton. Dynamical binary latent variable models for 3d human pose tracking. In Proc. of CVPR, 2010.
    • (2010) Proc. of CVPR
    • Taylor, G.W.1    Sigal, L.2    Fleet, D.J.3    Hinton, G.E.4
  • 29
    • 84879878460 scopus 로고    scopus 로고
    • Learning to relate images
    • R. Memisevic. Learning to relate images. IEEE Trans. on PAMI, 35(8):1829-1846, 2013.
    • (2013) IEEE Trans. on PAMI , vol.35 , Issue.8 , pp. 1829-1846
    • Memisevic, R.1
  • 32
    • 84923272712 scopus 로고    scopus 로고
    • Latent Kullback Leibler control for continuous-state systems using probabilistic graphical models
    • T. Matsubara, V. Gómez, and H. J. Kappen. Latent Kullback Leibler control for continuous-state systems using probabilistic graphical models. UAI, 2014.
    • (2014) UAI
    • Matsubara, T.1    Gómez, V.2    Kappen, H.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.