메뉴 건너뛰기




Volumn 37, Issue 2, 2007, Pages 227-244

Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction

Author keywords

Adaptive neuro fuzzy inference system; Discrete wavelet transform; Electroencephalogram; Epileptic seizure; Fuzzy logic

Indexed keywords

BACKPROPAGATION; DECISION MAKING; FEATURE EXTRACTION; FUZZY SETS; NEURAL NETWORKS; PROBLEM SOLVING; WAVELET TRANSFORMS;

EID: 33845386973     PISSN: 00104825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2005.12.003     Document Type: Article
Times cited : (175)

References (45)
  • 2
    • 29744467968 scopus 로고    scopus 로고
    • A. Subasi, E. Erçelebi, A. Alkan, E. Koklukaya, Comparison of subspace-based methods with AR parametric methods in epileptic seizure detection, Comput. Biol. Med. 36 (2006) 195-208.
  • 3
    • 0033794194 scopus 로고    scopus 로고
    • Application of periodogram and AR spectral analysis to EEG signals
    • Akin M., and Kiymik M.K. Application of periodogram and AR spectral analysis to EEG signals. J. Med. Syst. 24 4 (2000) 247-256
    • (2000) J. Med. Syst. , vol.24 , Issue.4 , pp. 247-256
    • Akin, M.1    Kiymik, M.K.2
  • 4
    • 0034796777 scopus 로고    scopus 로고
    • AR spectral analysis of EEG signals by using maximum likelihood estimation
    • Guler I., Kiymik M.K., Akin M., and Alkan A. AR spectral analysis of EEG signals by using maximum likelihood estimation. Comput. Biol. Med. 31 (2001) 441-450
    • (2001) Comput. Biol. Med. , vol.31 , pp. 441-450
    • Guler, I.1    Kiymik, M.K.2    Akin, M.3    Alkan, A.4
  • 5
    • 6344246400 scopus 로고    scopus 로고
    • Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure
    • Kiymik M.K., Subasi A., and Ozcali{dotless}k H.R. Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure. J. Med. Syst. 28 6 (2004) 511-522
    • (2004) J. Med. Syst. , vol.28 , Issue.6 , pp. 511-522
    • Kiymik, M.K.1    Subasi, A.2    Ozcalik, H.R.3
  • 6
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • Adeli H., Zhou Z., and Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 123 (2003) 69-87
    • (2003) J. Neurosci. Methods , vol.123 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 7
    • 5644255894 scopus 로고    scopus 로고
    • Automatic recognition of alertness level by using wavelet transform and artificial neural network
    • Kiymik M.K., Akin M., and Subasi A. Automatic recognition of alertness level by using wavelet transform and artificial neural network. J. Neurosci. Methods 139 2 (2004) 231-240
    • (2004) J. Neurosci. Methods , vol.139 , Issue.2 , pp. 231-240
    • Kiymik, M.K.1    Akin, M.2    Subasi, A.3
  • 8
    • 0031141135 scopus 로고    scopus 로고
    • Classification of EEG signals using the wavelet transform
    • Hazarika N., Chen J.Z., Tsoi A.C., and Sergejew A. Classification of EEG signals using the wavelet transform. Signal Process. 59 1 (1997) 61-72
    • (1997) Signal Process. , vol.59 , Issue.1 , pp. 61-72
    • Hazarika, N.1    Chen, J.Z.2    Tsoi, A.C.3    Sergejew, A.4
  • 9
    • 0038398958 scopus 로고    scopus 로고
    • Wavelet based automatic seizure detection in intracerebral electroencephalogram
    • Khan Y.U., and Gotman J. Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin. Neurophysiol. 114 (2003) 898-908
    • (2003) Clin. Neurophysiol. , vol.114 , pp. 898-908
    • Khan, Y.U.1    Gotman, J.2
  • 10
    • 17844371713 scopus 로고    scopus 로고
    • Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients
    • Subasi A. Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients. Expert Syst. Appl. 28 (2005) 701-711
    • (2005) Expert Syst. Appl. , vol.28 , pp. 701-711
    • Subasi, A.1
  • 11
    • 22144480299 scopus 로고    scopus 로고
    • Epileptic seizure detection using dynamic wavelet network
    • Subasi A. Epileptic seizure detection using dynamic wavelet network. Expert Syst. Appl. 29 (2005) 343-355
    • (2005) Expert Syst. Appl. , vol.29 , pp. 343-355
    • Subasi, A.1
  • 12
    • 17444432619 scopus 로고    scopus 로고
    • Automatic detection of ophthalmic artery stenosis using the adaptive neuro-fuzzy inference system
    • Guler I., and Ubeyli E.D. Automatic detection of ophthalmic artery stenosis using the adaptive neuro-fuzzy inference system. Eng. Appl. Artif. Intell. 18 (2005) 413-422
    • (2005) Eng. Appl. Artif. Intell. , vol.18 , pp. 413-422
    • Guler, I.1    Ubeyli, E.D.2
  • 13
    • 14844363880 scopus 로고    scopus 로고
    • Automatic detection of erythemato-squamous diseases using adaptive neuro-fuzzy inference systems
    • Ubeyli E.D., and Guler I. Automatic detection of erythemato-squamous diseases using adaptive neuro-fuzzy inference systems. Comput. Biol. Med. 35 (2005) 421-433
    • (2005) Comput. Biol. Med. , vol.35 , pp. 421-433
    • Ubeyli, E.D.1    Guler, I.2
  • 14
    • 3242764614 scopus 로고    scopus 로고
    • Application of adaptive neuro-fuzzy inference system for detection of electrocardiographic changes in patients with partial epilepsy using feature extraction
    • Guler I., and Ubeyli E.D. Application of adaptive neuro-fuzzy inference system for detection of electrocardiographic changes in patients with partial epilepsy using feature extraction. Expert Syst. Appl. 27 (2004) 323-330
    • (2004) Expert Syst. Appl. , vol.27 , pp. 323-330
    • Guler, I.1    Ubeyli, E.D.2
  • 15
    • 23944506015 scopus 로고    scopus 로고
    • E.D. Ubeyli, I. Guler, Adaptive neuro-fuzzy inference systems for analysis of internal carotid arterial Doppler signals, Comput. Biol. Med. 35 (2005) 687-702.
  • 16
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: fundamentals, computing, design, and application
    • Basheer I.A., and Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43 (2000) 3-31
    • (2000) J. Microbiol. Methods , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 17
    • 0033990625 scopus 로고    scopus 로고
    • Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG
    • Petrosian A., Prokhorov D., Homan R., Dashei R., and Wunsch D. Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing 30 (2000) 201-218
    • (2000) Neurocomputing , vol.30 , pp. 201-218
    • Petrosian, A.1    Prokhorov, D.2    Homan, R.3    Dashei, R.4    Wunsch, D.5
  • 18
    • 0030219951 scopus 로고    scopus 로고
    • Detection of seizure activity in EEG by an artificial neural network: a preliminary study
    • Pradhan N., Sadasivan P.K., and Arunodaya G.R. Detection of seizure activity in EEG by an artificial neural network: a preliminary study. Comput. Biomed. Res. 29 (1996) 303-313
    • (1996) Comput. Biomed. Res. , vol.29 , pp. 303-313
    • Pradhan, N.1    Sadasivan, P.K.2    Arunodaya, G.R.3
  • 19
    • 0031029383 scopus 로고    scopus 로고
    • A patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: possible use as a warning device
    • Qu H., and Gotman J. A patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: possible use as a warning device. IEEE Trans. Biomed. Eng. 44 (1997) 115-122
    • (1997) IEEE Trans. Biomed. Eng. , vol.44 , pp. 115-122
    • Qu, H.1    Gotman, J.2
  • 20
    • 17744374301 scopus 로고    scopus 로고
    • Classification of EEG signals using neural network and logistic regression
    • Subasi A., and Erçelebi E. Classification of EEG signals using neural network and logistic regression. Comput. Methods Programs Biomed. 78 (2005) 87-99
    • (2005) Comput. Methods Programs Biomed. , vol.78 , pp. 87-99
    • Subasi, A.1    Erçelebi, E.2
  • 21
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh L.A. Fuzzy sets. Inf. Control 8 3 (1965) 338-353
    • (1965) Inf. Control , vol.8 , Issue.3 , pp. 338-353
    • Zadeh, L.A.1
  • 22
    • 0027544110 scopus 로고
    • A fuzzy-logic based approach to qualitative modeling
    • Sugeno M., and Yasukawa T. A fuzzy-logic based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1 1 (1993) 7-31
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , Issue.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 23
    • 0344466786 scopus 로고    scopus 로고
    • A fuzzy-genetic approach to breast cancer diagnosis
    • Pena-Reyes C.A., and Siper M. A fuzzy-genetic approach to breast cancer diagnosis. Artif. Intell. Med. 17 (1999) 131-155
    • (1999) Artif. Intell. Med. , vol.17 , pp. 131-155
    • Pena-Reyes, C.A.1    Siper, M.2
  • 24
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • Nauck D., and Kruse R. Obtaining interpretable fuzzy classification rules from medical data. Artif. Intell. Med. 16 (1999) 149-169
    • (1999) Artif. Intell. Med. , vol.16 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 25
    • 0027601884 scopus 로고
    • ANFIS: adaptive network based fuzzy inference system
    • Jang J.S.R. ANFIS: adaptive network based fuzzy inference system. IEEE Trans. Syst., Man Cybern. 23 3 (1993) 665-683
    • (1993) IEEE Trans. Syst., Man Cybern. , vol.23 , Issue.3 , pp. 665-683
    • Jang, J.S.R.1
  • 26
    • 0026925677 scopus 로고
    • Self-learning fuzzy controllers based on temporal backpropagation
    • Jang J.S.R. Self-learning fuzzy controllers based on temporal backpropagation. IEEE Trans. Neural Networks 3 5 (1992) 714-723
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.5 , pp. 714-723
    • Jang, J.S.R.1
  • 27
    • 0032947524 scopus 로고    scopus 로고
    • A fuzzy logic-controlled classifier for use in implantable cardioverter defibrillators
    • Usher J., Campbell D., Vohra J., and Cameron J. A fuzzy logic-controlled classifier for use in implantable cardioverter defibrillators. Clin. Electrophysiol. 22 (1999) 183-186
    • (1999) Clin. Electrophysiol. , vol.22 , pp. 183-186
    • Usher, J.1    Campbell, D.2    Vohra, J.3    Cameron, J.4
  • 28
    • 0036161338 scopus 로고    scopus 로고
    • Automatic detection of distorted plethysmogram pulses in neonates and paediatric patients using an adaptive-network-based fuzzy inference system
    • Belal S.Y., Taktak A.F.G., Nevill A.J., Spencer S.A., Roden D., and Bevan S. Automatic detection of distorted plethysmogram pulses in neonates and paediatric patients using an adaptive-network-based fuzzy inference system. Artif. Intell. Med. 24 (2002) 149-165
    • (2002) Artif. Intell. Med. , vol.24 , pp. 149-165
    • Belal, S.Y.1    Taktak, A.F.G.2    Nevill, A.J.3    Spencer, S.A.4    Roden, D.5    Bevan, S.6
  • 29
    • 19244382035 scopus 로고    scopus 로고
    • A new method for impulsive noise suppression from highly distorted images by using ANFIS
    • Besdok E. A new method for impulsive noise suppression from highly distorted images by using ANFIS. Eng. Appl. Artif. Intell. 17 (2004) 519-527
    • (2004) Eng. Appl. Artif. Intell. , vol.17 , pp. 519-527
    • Besdok, E.1
  • 30
    • 2942525326 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on wavelet transform and fuzzy inference
    • Lou X., and Loparo K.A. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech. Syst. Signal Process. 18 (2004) 1077-1095
    • (2004) Mech. Syst. Signal Process. , vol.18 , pp. 1077-1095
    • Lou, X.1    Loparo, K.A.2
  • 31
    • 2942564462 scopus 로고    scopus 로고
    • Artificial neural networks and neuro-fuzzy systems for modelling and controlling real systems: a comparative study
    • Vieira J., Dias F.M., and Mota A. Artificial neural networks and neuro-fuzzy systems for modelling and controlling real systems: a comparative study. Eng. Appl. Artif. Intell. 17 (2004) 265-273
    • (2004) Eng. Appl. Artif. Intell. , vol.17 , pp. 265-273
    • Vieira, J.1    Dias, F.M.2    Mota, A.3
  • 32
    • 0032770222 scopus 로고    scopus 로고
    • Fuzzy logic alternative for analysis in the biomedical sciences
    • Virant-Klun I., and Virant J. Fuzzy logic alternative for analysis in the biomedical sciences. Comput. Biomed. Res. 32 (1999) 305-321
    • (1999) Comput. Biomed. Res. , vol.32 , pp. 305-321
    • Virant-Klun, I.1    Virant, J.2
  • 33
    • 0037107846 scopus 로고    scopus 로고
    • Brain electrical activity analysis using wavelet-based informational tools
    • Rosso O.A., Martin M.T., and Plastino A. Brain electrical activity analysis using wavelet-based informational tools. Physica A 313 (2002) 587-608
    • (2002) Physica A , vol.313 , pp. 587-608
    • Rosso, O.A.1    Martin, M.T.2    Plastino, A.3
  • 36
    • 0345356528 scopus 로고    scopus 로고
    • Estimation of the self-similarity parameter using the wavelet transform
    • Soltani S., Simard P., and Boichu D. Estimation of the self-similarity parameter using the wavelet transform. Signal Process. 84 (2004) 117-123
    • (2004) Signal Process. , vol.84 , pp. 117-123
    • Soltani, S.1    Simard, P.2    Boichu, D.3
  • 37
    • 0344517072 scopus 로고    scopus 로고
    • Functions and sources of event-related EEG alpha oscillations studied with the wavelet transform
    • Quiroga R.Q., and Schurmann M. Functions and sources of event-related EEG alpha oscillations studied with the wavelet transform. Clin. Neurophysiol. 110 (1999) 643-654
    • (1999) Clin. Neurophysiol. , vol.110 , pp. 643-654
    • Quiroga, R.Q.1    Schurmann, M.2
  • 38
    • 0034793856 scopus 로고    scopus 로고
    • Electroencephalogram analysis using fast wavelet transform
    • Zhang Z., Kawabata H., and Liu Z.Q. Electroencephalogram analysis using fast wavelet transform. Comput. Biol. Med. 31 (2001) 429-440
    • (2001) Comput. Biol. Med. , vol.31 , pp. 429-440
    • Zhang, Z.1    Kawabata, H.2    Liu, Z.Q.3
  • 39
  • 40
    • 0037706902 scopus 로고    scopus 로고
    • Realtime bioelectrical data acquisition and processing from 128 channels utilizing the wavelet-transformation
    • Folkers A., Mosch F., Malina T., and Hofmann U.G. Realtime bioelectrical data acquisition and processing from 128 channels utilizing the wavelet-transformation. Neurocomputing 52-54 (2003) 247-254
    • (2003) Neurocomputing , vol.52-54 , pp. 247-254
    • Folkers, A.1    Mosch, F.2    Malina, T.3    Hofmann, U.G.4
  • 41
    • 0037410182 scopus 로고    scopus 로고
    • Wavelet analysis of generalized tonic-clonic epileptic seizures
    • Rosso O.A., Blanco S., and Rabinowicz A. Wavelet analysis of generalized tonic-clonic epileptic seizures. Signal Process. 83 (2003) 1275-1289
    • (2003) Signal Process. , vol.83 , pp. 1275-1289
    • Rosso, O.A.1    Blanco, S.2    Rabinowicz, A.3
  • 42
    • 0032796009 scopus 로고    scopus 로고
    • Wavelet analysis of neuroelectric waveforms: a conceptual tutorial
    • Samar V.J., Bopardikar A., Rao R., and Swartz K. Wavelet analysis of neuroelectric waveforms: a conceptual tutorial. Brain Language 66 (1999) 7-60
    • (1999) Brain Language , vol.66 , pp. 7-60
    • Samar, V.J.1    Bopardikar, A.2    Rao, R.3    Swartz, K.4
  • 43
    • 0034887405 scopus 로고    scopus 로고
    • Wavelet transform in the analysis of the frequency composition of evoked potentials
    • Quiroga R.Q., Sakowitz O.W., Basar E., and Schurmann M. Wavelet transform in the analysis of the frequency composition of evoked potentials. Brain Res. Protocols 8 (2001) 16-24
    • (2001) Brain Res. Protocols , vol.8 , pp. 16-24
    • Quiroga, R.Q.1    Sakowitz, O.W.2    Basar, E.3    Schurmann, M.4
  • 45
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang J.S.R., and Sun C.T. Neuro-fuzzy modeling and control. Proc. IEEE 83 3 (1995) 378-406
    • (1995) Proc. IEEE , vol.83 , Issue.3 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.