메뉴 건너뛰기




Volumn 28, Issue 6, 2004, Pages 511-522

Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure

Author keywords

artificial neural networks (ANN); autoregressive method (AR); EEG; epileptic seizure; periodogram

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; CALCULATION; ELECTRODE; ELECTROENCEPHALOGRAM; MORPHOLOGY; POSITIVE FEEDBACK; SEIZURE; SPECTROSCOPY;

EID: 6344246400     PISSN: 01485598     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:JOMS.0000044954.85566.a9     Document Type: Article
Times cited : (60)

References (20)
  • 1
    • 0001587266 scopus 로고    scopus 로고
    • Biomedical signals: Origin and dynamic characteristics; frequency-domain analysis
    • Bronzino, J. D. (eds.), CRC Press LLC, Boca Raton
    • Cohen, A., Biomedical signals: Origin and dynamic characteristics; frequency-domain analysis. In Bronzino, J. D. (eds.), The Biomedical Engineering Handbook, 2nd edn., CRC Press LLC, Boca Raton, 2000.
    • (2000) The Biomedical Engineering Handbook, 2nd Edn.
    • Cohen, A.1
  • 2
    • 0032101235 scopus 로고    scopus 로고
    • Seizure detection of newborn EEG using a model approach
    • Roessgen, M., Zoubir, M., and Boashash, B., Seizure detection of newborn EEG using a model approach. IEEE Trans. Biomed. Eng. 45(6):673-685.1998.
    • (1998) IEEE Trans. Biomed. Eng. , vol.45 , Issue.6 , pp. 673-685
    • Roessgen, M.1    Zoubir, M.2    Boashash, B.3
  • 3
    • 0033794194 scopus 로고    scopus 로고
    • Application of periodogram and AR spectral analysis to EEG signals
    • Akin, M., and Kiymik, M. K., Application of periodogram and AR spectral analysis to EEG signals. J. Med. Syst. 24(4):247-256, 2000.
    • (2000) J. Med. Syst. , vol.24 , Issue.4 , pp. 247-256
    • Akin, M.1    Kiymik, M.K.2
  • 5
    • 0034796777 scopus 로고    scopus 로고
    • AR spectral analysis of EEG signals by using maximum likelihood estimation
    • Guler, I., Kiymik, M. K., Akin, M., and Alkan, A., AR spectral analysis of EEG signals by using maximum likelihood estimation. Comp Biol. Med. 31:441-447, 2001.
    • (2001) Comp Biol. Med. , vol.31 , pp. 441-447
    • Guler, I.1    Kiymik, M.K.2    Akin, M.3    Alkan, A.4
  • 6
    • 0019559758 scopus 로고
    • Computer analysis of EEG signals with 4 parametric models
    • Isaksson, A., Wennberg, A., and Zetterberg, L. H., Computer analysis of EEG signals with 4 parametric models. Proc. IEEE. 69(4):451-461, 1981.
    • (1981) Proc. IEEE , vol.69 , Issue.4 , pp. 451-461
    • Isaksson, A.1    Wennberg, A.2    Zetterberg, L.H.3
  • 7
    • 0030273681 scopus 로고    scopus 로고
    • An adaptive structure neural network with application to EEG automatic seizure detection
    • Weng, W., Khorasani, K., An adaptive structure neural network with application to EEG automatic seizure detection. Neural Networks, 9:1223-1240, 1996.
    • (1996) Neural Networks , vol.9 , pp. 1223-1240
    • Weng, W.1    Khorasani, K.2
  • 9
    • 0033990625 scopus 로고    scopus 로고
    • Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG
    • Petrosian, A., Prokhorov, D., Homan, R., Dashei, R., and Wunsch, D., Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing 30:201-218, 2000.
    • (2000) Neurocomputing , vol.30 , pp. 201-218
    • Petrosian, A.1    Prokhorov, D.2    Homan, R.3    Dashei, R.4    Wunsch, D.5
  • 10
    • 0030219951 scopus 로고    scopus 로고
    • Detection of seizure activity in EEG by an artificial neural network: A preliminary study
    • Pradhan, N., Sadasivan, P. K., and Arunodaya, G. R., Detection of seizure activity in EEG by an artificial neural network: A preliminary study. Comp. Biomed. Res. 29:303-313, 1996.
    • (1996) Comp. Biomed. Res. , vol.29 , pp. 303-313
    • Pradhan, N.1    Sadasivan, P.K.2    Arunodaya, G.R.3
  • 11
    • 0034095166 scopus 로고    scopus 로고
    • Detection of characteristic waves of sleep EEG by neural network analysis
    • Shimada, T., Shiina, T., and Saito, Y., Detection of characteristic waves of sleep EEG by neural network analysis. IEEE Trans. Biomed. Eng. 47:369-379, 2000.
    • (2000) IEEE Trans. Biomed. Eng. , vol.47 , pp. 369-379
    • Shimada, T.1    Shiina, T.2    Saito, Y.3
  • 12
    • 0034254452 scopus 로고    scopus 로고
    • The forward EEG solutions can be computed using artificial neural networks
    • Sun, M., and Sclabassi, R. J. The forward EEG solutions can be computed using artificial neural networks. IEEE Trans. Biomed. Eng. 47:1044-1050, 2000.
    • (2000) IEEE Trans. Biomed. Eng. , vol.47 , pp. 1044-1050
    • Sun, M.1    Sclabassi, R.J.2
  • 13
    • 0028853235 scopus 로고
    • Evaluation of parametric methods in EEG signal analysis
    • Tseng, S.-Y., Chen, R.-C., Chong, F.-C., and Kuo, T.-S., Evaluation of parametric methods in EEG signal analysis. Med. Eng. Phys. 17:71-78, 1995.
    • (1995) Med. Eng. Phys. , vol.17 , pp. 71-78
    • Tseng, S.-Y.1    Chen, R.-C.2    Chong, F.-C.3    Kuo, T.-S.4
  • 14
    • 0033945686 scopus 로고    scopus 로고
    • Methods for robust clustering of epileptic EEG spikes
    • Wahlberg, P., and Lantz, L., Methods for robust clustering of epileptic EEG spikes. IEEE Trans. Biomed. Eng. 47:857-868, 2000.
    • (2000) IEEE Trans. Biomed. Eng. , vol.47 , pp. 857-868
    • Wahlberg, P.1    Lantz, L.2
  • 15
    • 0035259288 scopus 로고    scopus 로고
    • An artificial neural network approach to diagnosing epilepsy using lateralized bursts of theta EEGs
    • Walczak, S., and Nowack, W. J., An artificial neural network approach to diagnosing epilepsy using lateralized bursts of theta EEGs. J. Med. Syst. 25:9-20, 2001.
    • (2001) J. Med. Syst. , vol.25 , pp. 9-20
    • Walczak, S.1    Nowack, W.J.2
  • 16
    • 0025915841 scopus 로고
    • State-dependent spike detection: Concepts and preliminary results
    • Gotman, J., and Wang, L., State-dependent spike detection: Concepts and preliminary results. Electroencephal. Clin. Neurophysiol. 79:11-19, 1991.
    • (1991) Electroencephal. Clin. Neurophysiol. , vol.79 , pp. 11-19
    • Gotman, J.1    Wang, L.2
  • 17
    • 0029325603 scopus 로고
    • On-line spectral estimation of nonstationary time series based on AR model parameter estimation and order selection with a forgetting factor
    • Goto, S., Nakamura, M., and Uosaki, K., On-line spectral estimation of nonstationary time series based on AR model parameter estimation and order selection with a forgetting factor. IEEE Trans. Signal Process. 43:1519-1522, 1995.
    • (1995) IEEE Trans. Signal Process , vol.43 , pp. 1519-1522
    • Goto, S.1    Nakamura, M.2    Uosaki, K.3
  • 18
    • 0032192407 scopus 로고    scopus 로고
    • Mining multi-channel EEG for its information content: An ANN-based method for a brain-computer interface
    • Peters, B. O., Pfurtscheller, G., and Flyvbjerg, H., Mining multi-channel EEG for its information content: An ANN-based method for a brain-computer interface. Neural Netw. 11:1429-1433, 1998.
    • (1998) Neural Netw. , vol.11 , pp. 1429-1433
    • Peters, B.O.1    Pfurtscheller, G.2    Flyvbjerg, H.3
  • 20
    • 0031141135 scopus 로고    scopus 로고
    • Classification of EEG signals using the wavelet transform
    • Hazarika, N., Chen, J. Z., Tsoi, A. C., and Sergejev, A., Classification of EEG signals using the wavelet transform. Signal Process. 59:61-72, 1997.
    • (1997) Signal Process , vol.59 , pp. 61-72
    • Hazarika, N.1    Chen, J.Z.2    Tsoi, A.C.3    Sergejev, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.