메뉴 건너뛰기




Volumn 16, Issue 3, 2006, Pages 259-273

Analysis of EEG signals using Lyapunov exponents

Author keywords

Chaotic signal; Electroencephalogram (EEG) signals; Levenberg Marquardt algorithm; Lyapunov exponents; Multilayer perceptron neural network (MLPNN); Training algorithms

Indexed keywords

ALGORITHMS; BACKPROPAGATION; COMPUTER ARCHITECTURE; LYAPUNOV METHODS; NEURAL NETWORKS; SIGNAL PROCESSING;

EID: 33746286608     PISSN: 12100552     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (32)

References (31)
  • 1
    • 0032834572 scopus 로고    scopus 로고
    • Non-linear time series analysis of intracranial EEC recordings in patients with epilepsy - An overview
    • Lehnertz K.: Non-linear time series analysis of intracranial EEC recordings in patients with epilepsy - an overview, International Journal of Psychophysiology, 34, 1, 1999, pp. 45-52.
    • (1999) International Journal of Psychophysiology , vol.34 , Issue.1 , pp. 45-52
    • Lehnertz, K.1
  • 4
    • 0030265798 scopus 로고    scopus 로고
    • The evolution of complexity in human brain development: An EEG study
    • Lindenberg A. M.: The evolution of complexity in human brain development: an EEG study, Electroencephalography and Clinical Neurophysiology, 99, 5, 1996, pp. 405-411.
    • (1996) Electroencephalography and Clinical Neurophysiology , vol.99 , Issue.5 , pp. 405-411
    • Lindenberg, A.M.1
  • 7
    • 26944458497 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
    • Güter I., Übeyli E. D.: Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients, Journal of Neuroscience Methods, 148, 2, 2005, pp. 113-121.
    • (2005) Journal of Neuroscience Methods , vol.148 , Issue.2 , pp. 113-121
    • Güter, I.1    Übeyli, E.D.2
  • 8
    • 0034809196 scopus 로고    scopus 로고
    • Chaos in the brain: A short review alluding to epilepsy, depression, exercise and lateralization
    • Sarbadhikari S. N., Chakrabarty K.: Chaos in the brain: a short review alluding to epilepsy, depression, exercise and lateralization, Medical Engineering & Physics, 23, 7, 2001, pp. 445-455.
    • (2001) Medical Engineering & Physics , vol.23 , Issue.7 , pp. 445-455
    • Sarbadhikari, S.N.1    Chakrabarty, K.2
  • 9
    • 0032116702 scopus 로고    scopus 로고
    • Dynamics extraction in multivariate biomedical time series
    • Silipo R., Deco G., Vergassola R., Bartsch H.: Dynamics extraction in multivariate biomedical time series, Biological Cybernetics, 79, 1, 1998, pp. 15-27.
    • (1998) Biological Cybernetics , vol.79 , Issue.1 , pp. 15-27
    • Silipo, R.1    Deco, G.2    Vergassola, R.3    Bartsch, H.4
  • 10
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time seires of brain electrical activity: Dependence on recording region and brain state
    • Andrzejak R. G., Lehnertz K., Mormann F., Rieke C., David P., Elger C. E.: Indications of nonlinear deterministic and finite-dimensional structures in time seires of brain electrical activity: dependence on recording region and brain state, Physical Review E, 061907, 64, 2001.
    • (2001) Physical Review E, 061907 , vol.64
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 11
    • 0029191714 scopus 로고
    • Detection of signals in chaos
    • Haykin S., Li X. B.: Detection of signals in chaos, Proceedings of the IEEE, 83, 1, 1995, pp. 95-122.
    • (1995) Proceedings of the IEEE , vol.83 , Issue.1 , pp. 95-122
    • Haykin, S.1    Li, X.B.2
  • 12
    • 45149144372 scopus 로고
    • Nonlinear prediction of chaotic time series
    • Casdagli M.: Nonlinear prediction of chaotic time series, Physica D, 35, 3, 1989, pp. 335-356.
    • (1989) Physica D , vol.35 , Issue.3 , pp. 335-356
    • Casdagli, M.1
  • 14
    • 0001731208 scopus 로고
    • Lyapunov exponents in chaotic systems: Their importance and their evaluation using observed data
    • Abarbanel H. D. I., Brown R., Kennel M. B.: Lyapunov exponents in chaotic systems: their importance and their evaluation using observed data, International Journal of Modern Physics B, 5, 9, 1991, pp. 1347-1375.
    • (1991) International Journal of Modern Physics B , vol.5 , Issue.9 , pp. 1347-1375
    • Abarbanel, H.D.I.1    Brown, R.2    Kennel, M.B.3
  • 16
    • 0018989294 scopus 로고
    • Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them
    • Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them, Meccanica, 15, 1, 1980, pp. 9-30.
    • (1980) Meccanica , vol.15 , Issue.1 , pp. 9-30
    • Benettin, G.1    Galgani, L.2    Giorgilli, A.3    Strelcyn, J.-M.4
  • 18
    • 0008494528 scopus 로고
    • Determining Lyapunov exponents from a time series
    • Wolf A., Swift J. B., Swinney H. L., Vastano J. A.: Determining Lyapunov exponents from a time series, Physica D, 16, 3, 1985, pp. 285-317.
    • (1985) Physica D , vol.16 , Issue.3 , pp. 285-317
    • Wolf, A.1    Swift, J.B.2    Swinney, H.L.3    Vastano, J.A.4
  • 19
    • 0001394076 scopus 로고
    • Measurement of the Lyapunov spectrum from a chaotic time series
    • Sano M., Sawada Y.: Measurement of the Lyapunov spectrum from a chaotic time series, Physical Review Letters, 55, 10, 1985, pp. 1082-1085.
    • (1985) Physical Review Letters , vol.55 , Issue.10 , pp. 1082-1085
    • Sano, M.1    Sawada, Y.2
  • 21
    • 0034283761 scopus 로고    scopus 로고
    • Efficient training and improved performance of multilayer perceptron in pattern classification
    • Chaudhuri B. B., Bhattacharya U. Efficient training and improved performance of multilayer perceptron in pattern classification, Neurocomputing, 34, 2000, pp. 11-27.
    • (2000) Neurocomputing , vol.34 , pp. 11-27
    • Chaudhuri, B.B.1    Bhattacharya, U.2
  • 22
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D. E., Hinton G. E., Williams R. J.: Learning representations by back-propagating errors, Nature, 323, 1986, pp. 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 23
    • 0024137490 scopus 로고
    • Increased rate of convergence through learning rate adaptation
    • Jacobs R. A.: Increased rate of convergence through learning rate adaptation, Neural Networks, 1, 1988, pp. 295-307.
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 24
    • 0025544875 scopus 로고
    • Back-propagation heuristics: A study of the extended delta-bar-delta algorithm
    • San Diego, California, 17-21 June
    • Minai A. A., Williams R. D.: Back-propagation heuristics: a study of the extended delta-bar-delta algorithm, Proceedings of International Joint Conference on Neural Networks, San Diego, California, 1, 17-21 June, 1990, pp. 595-600.
    • (1990) Proceedings of International Joint Conference on Neural Networks , vol.1 , pp. 595-600
    • Minai, A.A.1    Williams, R.D.2
  • 25
    • 0003578240 scopus 로고
    • An empirical study of learning speed in backpropagation networks
    • Carnegie Mellon University, Pittsburgh
    • Fahlman S. E.: An empirical study of learning speed in backpropagation networks, Computer Science Technical Report, CMU-CS-88-162, Carnegie Mellon University, Pittsburgh, 1988.
    • (1988) Computer Science Technical Report , vol.CMU-CS-88-162
    • Fahlman, S.E.1
  • 26
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M. T., Menhaj M. B.: Training feedforward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks, 5, 6, 1994, pp. 989-993.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 27
    • 0001024110 scopus 로고
    • First- And second-order methods for learning: Between steepest descent and Newton's method
    • Battiti R.: First- and second-order methods for learning: between steepest descent and Newton's method, Neural Computation, 4, 1992, pp. 141-166.
    • (1992) Neural Computation , vol.4 , pp. 141-166
    • Battiti, R.1
  • 28
    • 0025798480 scopus 로고
    • Efficacy of different learning algorithms of the back propagation network
    • 23-27, Hong Kong, 24-27 September
    • Chan L-W.: Efficacy of different learning algorithms of the back propagation network, IEEE Region 10 Conference on Computer and Communication Systems, 23-27, Hong Kong, 24-27 September, 1, 1990.
    • (1990) IEEE Region 10 Conference on Computer and Communication Systems , vol.1
    • Chan, L.-W.1
  • 29
    • 0028747894 scopus 로고
    • A comprehensive study of the backpropagation algorithm and modifications
    • Orlando FL USA, 29-31 March
    • Sidani A., Sidani T.: A comprehensive study of the backpropagation algorithm and modifications, IEEE Conference Record, 80-84, Orlando FL USA, 29-31 March, 1994.
    • (1994) IEEE Conference Record , vol.80-84
    • Sidani, A.1    Sidani, T.2
  • 30
    • 0030717309 scopus 로고    scopus 로고
    • A comparison of fast training algorithms over two real problems
    • Conference Publication, Cambridge UK, 7-9 July
    • Hannan J. M., Bishop J. M.: A comparison of fast training algorithms over two real problems, IEE Fifth International Conference on Artificial Neural Networks, Conference Publication, Cambridge UK, 440, 1-6, 7-9 July 1997.
    • (1997) IEE Fifth International Conference on Artificial Neural Networks , vol.440 , Issue.1-6
    • Hannan, J.M.1    Bishop, J.M.2
  • 31
    • 0027457620 scopus 로고
    • Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine
    • Zweig M. H., Campbell G.: Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine, Clinical Chemistry, 39, 4, 1993, pp. 561-577.
    • (1993) Clinical Chemistry , vol.39 , Issue.4 , pp. 561-577
    • Zweig, M.H.1    Campbell, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.