메뉴 건너뛰기




Volumn 191, Issue 1, 2010, Pages 101-109

Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks

Author keywords

Artificial neural network (ANN); Discrete wavelet transform (DWT); Electroencephalogram (EEG); Epileptic seizure detection; Line length feature

Indexed keywords

AMPLITUDE MODULATION; ANALYSIS; ARTICLE; ARTIFICIAL NEURAL NETWORK; CLASSIFICATION; DIAGNOSTIC PROCEDURE; ELECTROENCEPHALOGRAM; HIPPOCAMPUS; HUMAN; NORMAL HUMAN; PRIORITY JOURNAL; SEIZURE; WAVELET TRANSFORM;

EID: 77955054723     PISSN: 01650270     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jneumeth.2010.05.020     Document Type: Article
Times cited : (374)

References (41)
  • 1
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • Adeli H., Zhou Z., Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform. Journal of Neuroscience Methods 2003, 123(1):69-87.
    • (2003) Journal of Neuroscience Methods , vol.123 , Issue.1 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 2
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • 061907-1-061907-8
    • Andrzejak R., Lehnertz K., Mormann F., Rieke C., David P., Elger C. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E 2001, 64(6):061907-1-061907-8.
    • (2001) Physical Review E , vol.64 , Issue.6
    • Andrzejak, R.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.6
  • 3
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: Fundamentals, computing, design, and application
    • Basheer I., Hajmeer M. Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods 2000, 43(1):3-31.
    • (2000) Journal of Microbiological Methods , vol.43 , Issue.1 , pp. 3-31
    • Basheer, I.1    Hajmeer, M.2
  • 11
    • 26944458497 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
    • Güler I., Übeyli E. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. Journal of Neuroscience Methods 2005, 148(2):113-121.
    • (2005) Journal of Neuroscience Methods , vol.148 , Issue.2 , pp. 113-121
    • Güler, I.1    Übeyli, E.2
  • 12
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • Güler N., Übeyli E., Güler I. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications 2005, 29(3):506-514.
    • (2005) Expert Systems with Applications , vol.29 , Issue.3 , pp. 506-514
    • Güler, N.1    Übeyli, E.2    Güler, I.3
  • 15
    • 0029256646 scopus 로고
    • Wavelet preprocessing for automated neural network detection of EEG spikes
    • Kalayci T., Ozdamar O. Wavelet preprocessing for automated neural network detection of EEG spikes. IEEE Engineering in Medicine and Biology Magazine 1995, 14(2):160-166.
    • (1995) IEEE Engineering in Medicine and Biology Magazine , vol.14 , Issue.2 , pp. 160-166
    • Kalayci, T.1    Ozdamar, O.2
  • 19
    • 22244454103 scopus 로고    scopus 로고
    • Monitoring changing dynamics with correlation integrals: Case study of an epileptic seizure
    • Lerner D. Monitoring changing dynamics with correlation integrals: Case study of an epileptic seizure. Physica D: Nonlinear Phenomena 1996, 97(4):563-576.
    • (1996) Physica D: Nonlinear Phenomena , vol.97 , Issue.4 , pp. 563-576
    • Lerner, D.1
  • 20
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay D. A practical Bayesian framework for backpropagation networks. Neural Computation 1992, 4(3):448-472.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.1
  • 21
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • Mallat S. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 1989, 11(7):674-693.
    • (1989) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.1
  • 22
    • 77955055400 scopus 로고    scopus 로고
    • Mathworks. MATLAB V.6.5.0 Help files;
    • Mathworks. MATLAB V.6.5.0 Help files; 2002.
    • (2002)
  • 25
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • Nigam V., Graupe D. A neural-network-based detection of epilepsy. Neurological Research 2004, 26(1):55-60.
    • (2004) Neurological Research , vol.26 , Issue.1 , pp. 55-60
    • Nigam, V.1    Graupe, D.2
  • 26
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications 2009, 36(2):2027-2036.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 2027-2036
    • Ocak, H.1
  • 28
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
    • Polat K., Güneş S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation 2007, 187(2):1017-1026.
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.2 , pp. 1017-1026
    • Polat, K.1    Güneş, S.2
  • 30
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • Srinivasan V., Eswaran C., Sriraam N. Artificial neural network based epileptic detection using time-domain and frequency-domain features. Journal of Medical Systems 2005, 29(6):647-660.
    • (2005) Journal of Medical Systems , vol.29 , Issue.6 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 31
    • 17844371713 scopus 로고    scopus 로고
    • Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients
    • Subasi A. Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients. Expert Systems with Applications 2005, 28(4):701-711.
    • (2005) Expert Systems with Applications , vol.28 , Issue.4 , pp. 701-711
    • Subasi, A.1
  • 32
    • 22144480299 scopus 로고    scopus 로고
    • Epileptic seizure detection using dynamic wavelet network
    • Subasi A. Epileptic seizure detection using dynamic wavelet network. Expert Systems with Applications 2005, 29(2):343-355.
    • (2005) Expert Systems with Applications , vol.29 , Issue.2 , pp. 343-355
    • Subasi, A.1
  • 33
    • 33646135537 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizure using dynamic fuzzy neural networks
    • Subasi A. Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Systems with Applications 2006, 31(2):320-328.
    • (2006) Expert Systems with Applications , vol.31 , Issue.2 , pp. 320-328
    • Subasi, A.1
  • 34
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications 2007, 32(4):1084-1093.
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 35
    • 0034254452 scopus 로고    scopus 로고
    • The forward EEG solutions can be computed using artificial neural networks
    • Sun M., Sclabassi R. The forward EEG solutions can be computed using artificial neural networks. IEEE Transactions on Biomedical Engineering 2000, 47(8):1044-1050.
    • (2000) IEEE Transactions on Biomedical Engineering , vol.47 , Issue.8 , pp. 1044-1050
    • Sun, M.1    Sclabassi, R.2
  • 36
    • 77955058226 scopus 로고    scopus 로고
    • A method for classification of transient events in EEG recordings: application to epilepsy diagnosis
    • Tzallas A., Karvelis P., Katsis C., Fotiadis D., Giannopoulos S., Konitsiotis S. A method for classification of transient events in EEG recordings: application to epilepsy diagnosis. Nervenheilkunde 2007, 26(11):965-968.
    • (2007) Nervenheilkunde , vol.26 , Issue.11 , pp. 965-968
    • Tzallas, A.1    Karvelis, P.2    Katsis, C.3    Fotiadis, D.4    Giannopoulos, S.5    Konitsiotis, S.6
  • 37
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on time-frequency analysis and artificial neural networks
    • article ID 80510
    • Tzallas A., Tsipouras M., Fotiadis D. Automatic seizure detection based on time-frequency analysis and artificial neural networks. Computational Intelligence and Neuroscience 2007, 13. article ID 80510.
    • (2007) Computational Intelligence and Neuroscience , pp. 13
    • Tzallas, A.1    Tsipouras, M.2    Fotiadis, D.3
  • 38
    • 33746286608 scopus 로고    scopus 로고
    • Analysis of EEG signals using Lyapunov exponents
    • Übeyli E. Analysis of EEG signals using Lyapunov exponents. Neural Network World 2006, 16(3):257-273.
    • (2006) Neural Network World , vol.16 , Issue.3 , pp. 257-273
    • Übeyli, E.1
  • 39
    • 33751529035 scopus 로고    scopus 로고
    • Fuzzy similarity index employing Lyapunov exponents for discrimination of EEG signals
    • Übeyli E. Fuzzy similarity index employing Lyapunov exponents for discrimination of EEG signals. Neural Network World 2006, 16(5):421-431.
    • (2006) Neural Network World , vol.16 , Issue.5 , pp. 421-431
    • Übeyli, E.1
  • 40
    • 37049007663 scopus 로고    scopus 로고
    • Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines
    • Übeyli E. Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines. Computers in Biology and Medicine 2008, 38(1):14-22.
    • (2008) Computers in Biology and Medicine , vol.38 , Issue.1 , pp. 14-22
    • Übeyli, E.1
  • 41
    • 33846095446 scopus 로고    scopus 로고
    • Features extracted by eigenvector methods for detecting variability of EEG signals
    • Übeyli E., Güler I. Features extracted by eigenvector methods for detecting variability of EEG signals. Pattern Recognition Letters 2007, 28(5):592-603.
    • (2007) Pattern Recognition Letters , vol.28 , Issue.5 , pp. 592-603
    • Übeyli, E.1    Güler, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.